
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

EXTENSIBLE MARKUP LANGUAGE (XML) BASED
ANALYSIS AND COMPARISON OF HETEROGENEOUS

DATABASES

by

Robert F. Halle

June 2001

Thesis Advisor:
Second Reader:

Valdis Berzins
Paul Young

Approved for public release; distribution is unlimited.

20010910 110

REPORT DOCUMENTATION PAGE Form Approved
 OMB No. 0704-0188
L^^^c^T2 for *"* C°"e>?i0n °f intormation fe estimated to average 1 hour per response, including the fame tor reviewing instruction
™SÄ??' fla?a?r8 3nd maÜtainin9 *e data nee**. and completing and reviewing the collecfion oflSXn SeWd
comrnente regarding tfns burden estmate or any other aspect of this collection of information, including suggestions for reducing^ burden to
S20Ä ZATEST^' D,rectora!efo! 'nfratLon 0Peratons and Reports, 1215 Jefferson DaTHighway.Tute12u4SS VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. Mnin9ton- VA

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 2001

REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

Extensible Markup Language (XML) Based Analysis And Comparison Of
Heterogeneous Databases

5. FUNDING NUMBERS

6. AUTHOR(S)
Halle, Robert F.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING /
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES ~ ~ ~

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT

This thesis describes an Extensible Markup Language (XML) based analysis and comparison method that could be used to
identify equivalent components of heterogeneous databases. In the Department of Defense there currently exist multiple databases
required to support command and control of some portion of the battlefield force. Interoperability between forces will become
crucial as the force structure continues to be reduced. This interoperability will be facilitated through the integration of these
command and control databases into a singular joint database or by developing inter-communication Schemas to support inter-
database communications. The first step in either of these alternatives is the identification of equivalent components among the
multiple databases.

This thesis describes how XML can be used to facilitate the process of analyzing and comparing multiple databases Each
step of the process is described in detail accompanied by explanations of the XML tools/resources required to execute the step and
rationale of why-the step is necessary. Detailed graphics and examples are employed to simplify and justify the step by step
explanations. The JavaScript code developed as part of the research to execute the XML based analysis is included. This thesis
concludes with discussions of the overall value of this XML based analysis and comparison process and of potential future work
that could be pursued to further exploit mis XML analysis and comparison method.
" SUBJECT TERMS " ~—~ ' 14

Extensible Markup Language, XML Analysis, Heterogeneous Databases, Database Comparison, Database
Analysis, C4I

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

15. NUMBER OF
PAGES
154

16. PRICE CODE

20. LIMITATION
OF ABSTRACT
UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

EXTENSIBLE MARKUP LANGUAGE (XML) BASED ANALYSIS AND
COMPARISON OF HETEROGENEOUS DATABASES

Robert F.Halle

B.S.E.R, University of Michigan, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2001

Author:

Approved by:
VALDIS BERZINS/Thesis Advisor

P*~Q£
PAUL YOUN<

Luqi, Chair
Software Engineering

in

IV

ABSTRACT

This thesis describes an Extensible Markup Language (XML) based analysis and

comparison method that could be used to identify equivalent components of

heterogeneous databases. In the Department of Defense there currently exist multiple

databases required to support command and control of some portion of the battlefield

force. Interoperability between forces will become crucial as the force structure

continues to be reduced. This interoperability will be facilitated through the integration

of these command and control databases into a singular joint database or by developing

inter-communication Schemas to support inter-database communications. The first step

in either of these alternatives is the identification of equivalent components among the

multiple databases.

This thesis describes how XML can be used to facilitate the process of analyzing

and comparing multiple databases. Each step of the process is described in detail

accompanied by explanations of the XML tools/resources required to execute the step

and rationale of why the step is necessary. Detailed graphics and examples are employed

to simplify and justify the step by step explanations. The JavaScript code developed as

part of the research to execute the XML based analysis is included. This thesis concludes

with discussions of the overall value of this XML based analysis and comparison process

and of potential future work that could be pursued to further exploit this XML analysis

and comparison method.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. RESEARCH OVERVIEW 1
B. C4I BACKGROUND 1
C. OBJECTIVE OF THESIS: 3

D. WHAT is XML? 6

E. SCOPE OF RESEARCH: H
F. LIMITATIONS IMPACTING RESEARCH: 12
G. RESEARCH ASSUMPTIONS 13

H. ORGANIZATION 14

H. DATA AND PHYSICAL SCHEMA OF DATABASES 15

A. JOINT COMMON DATABASE 15
B. JCDB PRODUCTS 16
C. MODERNIZED INTEGRATED DATABASE 16
D. MIDB PRODUCTS 17

HI. SURVEY AND ASSESSMENT OF PREVIOUS WORK 19

A. BACKGROUND 19
B. DATABASES , 19

1. OODBMS. 20
2. RDBMS 20
3. RDBMS/OODBMS Advantages and Disadvantages 21

C. XML AND DATABASES 21
1. Similarities 22
2. Differences 23
3. Conclusion 23

D. COMMERCIAL DATABASE XML EFFORTS 24
/. Oracle 25
2. Sybase 27
3. Informix 28
4. Summary 28

E. DEPARTMENT OF DEFENSE AND XML 29
/. What is a Namespace? 30
2. DIICOE Namespace Registry 34
3. XML-MTF. 36
4. Problems with USMTF 38
5. XML-USMTFMapping. 39
6. Other DoD XML Messaging Efforts: 41
7. XML Mapping Caveat 43

F. PREVIOUS DATABASE ANALYSES METHODS 44
/. Research Preparation 44
2. Roadblocks Encountered During Research 45
3. An Opportunity for a New Analysis Method 47

IV. XML BASED ANALYSIS AND COMPARISON METHOD DESCRffTION 49

A. INTRODUCTION TO PROCESS 49
1. Focus of Process 49
2. Database Analysis Aspects Not Covered 50

vi l

B. DATABASE REVIEW STEP 51

/. JCDB/MIDB Comparison ZZZZ'Z. 54
2. JCDB View ZZZZZZZ. 55
3. MIDB View ZZZZZZZZZ'ZZZZZZZZ 56
4. Conclusion c.j

C. DATABASE CONVERSION TO XML56
A Database to XML Translation 57
2. XML Translation Alternative jp
3. JCDB and MIDB to XML Translations ZZZZZZZZ.59
4. Conclusion gn

D. ENTITY/ATTRIBUTE ANALYSIS AND COMPARISON "..^..61
1. Introduction $j
2. Process Description ^2
3. Conclusion 02

E. HIERARCHICAL EXAMINATION 63

1. What is a DOM? ZZZZZZZZZZZZZZ. 64
2. Process Description Introduction 74
3. Process Description Synopsis jg
4. Analysis Process Description jg
5. Summary of Analysis Process gj

F. JCDB AND MIDB VIEW ANALYSIS"."........87
/. Analysis Component Review gj
2. JCDB Analysis gg
3. MIDB Analysis pj

G. FINAL STEP - COMPARISON OF ANALYSIS RESULTS 92
1. Comparison Example p^
2. Comparison Summary gj

H. CHAPTER CONCLUSION ZZ 97
1. Database Review Summary gg
2. Database Conversion to XML Summary gg
3. Entity/Attribute Analysis and Comparison Summary gg
4. Hierarchical Examination Summary gg
5. Comparison of Analysis Results Summary JQJ

6. Research Limitations JQJ

7. Example Crosswalk JQ^

8. Commercial Application of Process 1Q4
9. Putting This Research Into Practice 1Q4

V. CONCLUSION AND FINAL RESEARCH POSSIBILITIES 106

A. CONCLUSION 10g
B. FUTURE WORK RESEARCH POSSIBILITIES 107

APPENDIX A - JCDB DATABASE VIEW 109

APPENDIX B - MIDB DATABASE VIEW 113

APPENDIX C - JCDB XML DOCUMENT 117

APPENDIX D - MTOB XML DOCUMENT 119

Vlll

APPENDIX E - ANALYSIS AND MANIPULATION CODE .123

APPENDIX F - JCDB ANALYSIS OUTPUT 129

APPENDIX G - MIDB ANALYSIS OUTPUT 131

GLOSSARY 135

LIST OF REFERENCES 137

INITIAL DISTRD3UTION LIST 139

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

ACKNOWLEDGEMENT

This author would like to thank several people who

supported and facilitated the writing of this thesis:

To Dr. Valdis Berzins and CAPT Paul Young for their

guidance, encouragement, and most of all their patience

during this research effort.

To my parents who provided encouragement and put up

with my sometimes irritable moods when I visited.

To my supervisors during the periods I pursued my

Masters. Mr. E. Robert DeGroot and LTC Ron Bokoch (Ret.)

who always managed to provide me the freedom from my

workload and travel as my studies required.

And finally, to the three other Master's candidates who

are now struggling to complete their theses as I am: In Fall

1998, we four started out in a group of about 20, now it's

down to just us. We were the only ones who went to all the

long classes after working 9 or 10 hours days and completed

all the coursework that was expected of us. It was a

pleasure and honor to learn with you. I couldn't think of

any other three people I would have rather experienced this

with.

XI

THIS PAGE INTENTIONALLY LEFT BLANK

XI1

I. INTRODUCTION

A. RESEARCH OVERVIEW

The reason for this research is to examine methods that

could improve interoperability between independently-

designed Command, Control, Communications, Computers,

Intelligence (C4I) Systems. Each of these C4I systems

employs a database to control and maintain its C4I

information. The means to facilitate the interoperability

between these different C4I systems will be by exchanging

the data from their individual databases. The first step

towards this data exchange will be to determine what parts

of the individual databases are similar.

This thesis describes a method that can identify the

•similarities between C4I databases. It will employ

Extensible Markup Language (XML) as a means to analyze these

C4I databases and to extract portions from each for closer

examination and comparison. The entire analysis and

comparison process will be described in detail and executed

using actual C4I databases.

B. C4I BACKGROUND

Command, Control, Communications, Computers, and

Intelligence (C4I) systems have been developed and continue

to be developed to support numerous and very diverse

military capabilities. These capabilities include mission

planning, battlefield command and control, logistics

management to name just a few. Each of these C4I systems

retains large and complex databases that store the data

necessary to execute its mission objectives. For example,

the Global Command and Control System (GCCS) Integrated,

Imagery and Intelligence (I3) utilizes the Modernized

Intelligence Database (MIDB) to store weapons systems

characteristics and national/tactical imagery to provide

operational commanders enhanced situational awareness. The

Advanced Field Artillery Tactical Data System (AFATDS)

employs the AFATDS Database to retain the data required to

support fire support planning, execution, movement, and

support.

Most C4I systems, including the ones described above,

are often called "legacy" systems. This is because they

were developed several years ago to support very specific

requirements. These legacy systems continue to be refined

over the years to expand existing functionality and to

incorporate new capabilities. As the amount and value of

data assembled and employed by these legacy systems grew, it

became apparent that the sharing of this data between

multiple C4I systems would enhance combined arms management

and increase the overall effectiveness of force. To support

this data sharing, joint databases are being developed that

can interface with the legacy database. One example of a

joint database is the Joint Common Database (JCDB).

The JCDB supports the Army Battlefield Command System

(ABCS) by providing consolidated data from multiple Army

systems to support development of a Common Tactical Picture

for Army battlefield commanders. This consolidated data is

also used to enhance the capabilities of the legacy systems

by sharing the information awareness of each legacy system

with the others.

C. OBJECTIVE OF THESIS:

The objective of this research is to identify a method

(or methods) that can help distinguish and identify common

data elements and physical Schemas between dissimilar C4I

databases. Extensible Markup Language (XML) is employed

wherever possible to facilitate this identification task.

Problems related to this identification task include:

- Databases are extremely large: The JCDB consists of

526 tables including 315 look-up or reference set tables

that are the data provider library to columns in the primary

tables. There are a total of 1257 columns in the JCDB, of

which 1147 are unique. Others appear in more than one table

[JDDOO]. To graphically display the physical schema using

entity relationship diagrams would take over 350 pages.

There are many databases: The many and often

dissimilar databases (like the ones identified earlier)

continue to evolve and change to incorporate new data to

support new functionality and remove unneeded data that

supported antiquated functionality.

- Database Terminology Variance: Subject matter experts

defined terminology that specifically related to C4I system

functionality as each database was developed independently.

This terminology variance can impact the comparison of

dissimilar databases. The terms "Tank" and "Armored

Vehicle" can be used to identify a heavily armored, mobile,

direct fire weapons system. The term "Tank" can also be

used to describe a water storage tank.

- Physical Schema Variance: Physical Schemas can vary

from database to database even though they describe the same

thing. For example, the following figure shows two

different representations of the same object. System A

describes everything in one object. System B uses the

attributes to describe the object in different lower level

objects. As a whole, physical schema A and physical schema

B describe the same object.

SYSTEM A

Car
Type: GM
Color: Red

SYSTEM B

Car

Type Trim
Manufacturer: GM Color: Red

Figure 1: Physical Schema Variations

- Required Human Intervention: Subject Matter Experts

(SMEs) will always have to be consulted when examining

heterogeneous databases. Figure 1 shows multiple terms and

physical Schemas can be used to describe the same object.

SMEs will always have to be consulted when comparing complex

objects to make the final determination of whether the

identified common data elements are truly common and whether

the associated physical Schemas are common.

The problems identified above mandated that the

objectives of this research project be refined to include

the following:

- Need for a method that can simplify the search and

comparison of multiple and very large databases.

The method must provide SMEs the information

necessary to make the final determination of what is common

and what is not common. This reduces work by showing the

SME only the parts that are likely to be related.

D. WHAT IS XML?

This research has been carried out in the context of

the markup language, XML. But what is a markup language?

Historically, the term markup originated as part of the

document publishing process. Documents would be "marked up"

by authors and editors to reflect style and format

instructions for the printers on how the document should be

printed. Over time these markup comments evolved into

markup languages. The goal of these markup languages was to

convey specific information on the text using a unique

format so that it wouldn't be confused with the text itself.

In 1969, Ed Mosher, Ray Lorie, and Charles F. Goldfarb

of IBM Research developed the Generalized Markup Language

(GML) [AndOO]. GML was the first markup language developed

to support modern electronic publishing needs. It was a

meta-language that was used to describe other languages,

their grammars, and vocabularies.

GML eventually became the Standardized Generalized

Markup Language (SGML) . In 1986, SGML was adopted as an

international data storage and exchange standard by the

International Organization for Standardization (ISO)

designated IS08879.

SGML's goal was to define descriptions of the structure

and content of different types of electronic documents. The

problem with SGML is that it is extremely complicated and

was only used by those who do large amounts of publishing

like newspaper companies and the publishers of technical

information. This complexity has increased over many years

as more and more is added to the specification to support

evolving publishing requirements. This growing complexity

has limited SGML use to those companies/ organizations that

could absorb the high cost of implementing and maintaining

SGML proficiency.

With the advent of the internet/web, Hypertext Markup

Language (HTML) was developed from SGML as an easily

understandable markup language. The primary objective for

HTML was that it had to be a simple markup language that a

user could use to describe a document structure as well as

the role each part played, regardless of how it looked on

the monitor. The benefit of using HTML is that it is easy

to learn, it is supported by the two primary browsers

(Explorer and Netscape), and most of all it's cheap. This

last benefit is the primary reason for the explosion of

HTML's use: Anybody can use HTML.

A problem with HTML is that it doesn't provide the

ability to easily modify the size/structure of the document

to the size of the screen. As described earlier, that is

one of primary purposes for a markup language is to provide

structure to a document for publishing. In HTML's case,

it's the publishing of information on the web to any

platform that can display web pages. For standard personal

computers, the display of this information is done extremely

well. But HTML has a more difficult time displaying that

information on mobile electronic devices like Palm Pilots,

pagers, and cell phones that are interfaced with the

internet.

Another problem with HTML is that it locks the data

with the presentation format. Once the data is built into

an HTML page, it is no longer easily accessible to the user

and cannot easily be displayed in a different format or be

processed further by other programs.

These two problems, along with many others, were why

XML was developed and why it has rapidly gained in

popularity.

In 1996, the World Wide Web Consortium (W3C) began to

develop an extensible markup language that would combine the

flexibility and power of SGML with the acceptance of HTML

[AndOO] . This was the start of the Extensible Markup

Language (XML).

As the starting point for XML's creation, W3C defined

10 design goals [XMLR1.0]:

1. XML shall be straightforwardly usable over the

internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process

XML documents.

5. The number of optional features in XML is to be

kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and

reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10.Terseness in XML markup is of minimal importance.

But what is XML? Simply put, XML is an open family of

markup language with which you can design ways of describing

data, usually for storage, transmission, or processing by a

program. XML is a meta-language for describing markup

languages thus providing the facility for a person to

define, or extend, his/her own descriptive terms for the

data and the structural relationships between the

descriptive terms. This is what the word "Extensible" in

Extensible Markup Language means and is the foundation of

XML. The following describes XML functionality:

- XML is extensible: An XML document can be easily

developed and understood. Data elements and attributes are

defined to personalize the XML document to meet any specific

requirement(s).

- XML relates well to relational databases: XML creates

and maintains a hierarchical data structure. Relational

database systems use relational models to associate data

entities/tables to simplify data sorting, searching, and

retrieval. Although these two data structure approaches are

very different, they both provide the means to create

hierarchical structures that can be maintained and shared.

- XML is not tied to any particular context: There is

no requirement for any particular programming languages,

operating system, or computer platform to build and process

XML documents. All computer platforms have simple text

editors that can be used to develop XML documents.

- XML is self-describing: An XML document should be

easy to read. This understandability results from the

process of defining the data elements and related hierarchy

based on the designer's own "common sense" perspective of

the data.

XML provides opportunity for development of

standardized data representations: The transfer of data

between different database systems developed by different

manufacturers using different operating systems has been a

complicated process. XML has the ability to support

development of independent data formats that multiple

database systems can understand.

10

E. SCOPE OF RESEARCH:

The Joint Battle Center (JBC) and the Naval

Postgraduate School (NPS) defined the scope of this

research. The Joint Battle Management Initiative Assessment

Plan [JBMIOO] describes the NPS led XML Schema Investigation

research to execute the following:

Determine methods for assuring scalability of

solution to legacy and migration C4I. This requires a

method(s) that can support analysis and comparisons of both

legacy and evolving common databases like JCDB.

- Determine what parts of a legacy system view could be

materialized from previous shared Schemas. This requires

the identified method(s) to be able to identify common

elements and physical Schemas.

- Determine how to materialize those parts relevant to

such an assessment. This requires the identified common

data elements and Schemas be integrated into a global common

schema.

This thesis describes the research associated with the

examination of previously developed analysis methods that

support different aspects of the defined tasks. Then a new

and original XML-based database analysis and comparison

method, developed as part of the research effort, is

described in detail. This method is demonstrated to show

how it supports the described JBC/NPS tasks.

11

F. LIMITATIONS IMPACTING RESEARCH:

The original research objectives (described earlier)

for this thesis effort involved detailed comparisons of the

JCDB, AFATDS, MIDB, and GCCS Track Database Manager Database

(TDBM) . As directed by NPS, the particular task to be

investigated in this research effort focused on the analysis

of the JCDB and AFATDS databases.

Unfortunately, the AFATDS database dictionary and

entity relationship diagrams proved to be unattainable in

sufficient time to support this research effort. After

several months of effort by several organizations and

individuals (including myself) information relating to the

AFATDS database could not be acquired. The AFATDS database

is a closely held document that would not be released to

support a master's level research project. The

unavailability of this critical component forced a

modification to the original research objectives from the

examination of the AFATDS to the examination of the MIDB.

The MIDB Data Dictionary provided sufficient detail to

support the development of entity relationship diagrams that

represented certain views of the MIDB. The developed views

of the MIDB were then compared against JCDB views extracted

from the provided JCDB Data Dictionary and Entity

Relationship Diagrams.

12

The sheer size of JCDB and MIDB presented a significant

challenge when executing an analysis of the two databases.

The specific database application software was required to

process these large databases. Since the application

software could not be acquired in time to support this

research effort, smaller views of particular portions of the

two databases were chosen for examination.

Another limitation faced during this research effort

was that XML is still evolving, in some cases evolving

rapidly. Some of the necessary recommendations are still in

draft form. It is expected that within one year all

necessary XML Recommendations (to be discussed later) will

be finalized and approved. It will then take the commercial

sector time to develop and field software that incorporates

these XML based capabilities. However, in some cases, the

commercial sector is already producing software that

incorporates capabilities defined in the draft

recommendations. When required, the XML based analysis

process to be described in this thesis had to employ XML

based capabilities that are still undergoing review.

G. RESEARCH ASSUMPTIONS

Assumption #1: The XML related draft recommendations

are stable and will be finalized in virtually the same form

and content.

13

Assumption #2: Current XML commercial sector

developments will continue at the same rapid pace once all

XML related recommendations are finalized and approved.

H. ORGANIZATION

This thesis is organized into the following chapters:

• Chapter II describes the databases to be examined in
this research effort.

• Chapter III provides a review of previous work in
this area. This includes descriptions of other
applicable examination methods, ongoing Department
of Defense XML efforts, and a rationalization of why
a new XML based analysis method is required.

• Chapter IV presents the XML based analysis method
developed during this research effort. The overall
analysis process is described. An execution of the
developed method with an analysis and comparison of
JCDB and MIDB views will follow the method
description.

• Chapter V presents the conclusions and
recommendations of future work derived from this
research effort.

• Following Chapter V are several appendices
containing the materials used to support this
research effort. Also included is the code
developed that executes this XML based analysis.
The appendices also contain the thesis glossary and
references used in this research effort.

14

II. DATA AND PHYSICAL SCHEMA OF DATABASES

The two databases to be analyzed in this research

effort are the JCDB and MIDB. Both are considered high

level common databases that incorporate data from several

systems for use by commanders who require information from

many sources to execute battle management.

A. JOINT COMMON DATABASE

The JCDB is a key component of the U.S. Army's efforts

to employ common software and data across command and

control (C2) systems [JCDB99]. The JCDB resides on the Army

Battlefield Command System (ABCS) and provides the data

necessary to support the common applications that build the

Common Tactical Picture (CTP). Some of the information

displayed as part of the CTP is:

• Friendly and enemy locations, activities, strength,
status, estimated and current capability.

• Tracking of resources.

• Tracking of materiel locations, status, and
quantities.

• Mapping of ground and air control measures.

• Mapping of facilities.

• Target nomination, engagement, and damage
assessment.

15

• Evaluation and verification of reported information.

• Development of operational orders and operational
plans.

B. JCDB PRODUCTS

The JCDB products available to support this research

effort were the Joint Data Model and the JDD. The Joint

Data Model is a logical data model that displays the entity

relationships of the JCDB entities and attributes. The JDD

is a data dictionary that provides data entity names,

definitions, datatype and domain values/enumerated types for

the entities.

C. MODERNIZED INTEGRATED DATABASE

The GCCS 13 system objectives are to provide accurate,

user friendly, and immediately accessible Integrated Imagery

and Intelligence (13) capabilities to support the

warfighter. The GCCS 13 provides commanders with

situational awareness and track management with a standard

set of linked tools that maximizes commonality across the

tactical, theater, and national communities [I3BR]

The GCCS 13 provides access to the information

maintained in the MIDB. This information includes:

• National and Theater-level intelligence on
facilities.

• Order-of-Battle

16

• Information on equipment and targets (including
target assessments)

• Derived intelligence entered by tactical
intelligence assets

This information is used to provide operational

commanders and intelligence analysts quick access to

intelligence and imagery through the Common Operational

Picture (COP).

D. MIDB PRODUCTS

The only MIDB product available to support this

research effort was the Modernized Integrated Database-

Database Design Document (MIDBD3) . The MIDBD3 is a data

dictionary that provides data entity names, definitions,

datatype and domain values/enumerated types for the

entities.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

III. SURVEY AND ASSESSMENT OF PREVIOUS WORK

A. BACKGROUND

With the focus of this research effort to locate and

analyze commonality between heterogeneous databases it is

important to understand the components that will make up the

identification process. The databases types, XML-database

relationships, and XML-information sharing need to be

understood before delving into an evaluation of previous

methods.

B. DATABASES

There are two types of database management systems

available to represent data. They are the Object Oriented

Database Management System (OODBMS) and the Relational

Database Management System (RDBMS). Each provides

capabilities that support unique database storage and

manipulation capabilities. Object Oriented Database

Management Systems provide the capability to deal with

objects that have complex relationships and depth [ANDOO].

Relational Database Management Systems provide the

capability to model many real world problems and provide

more thorough and rapid manipulation of the data [ANDOO].

19

1. OODBMS

OODBMSs provide the capability to build objects and

relate those objects to other objects. A complex object

interrelationship can quickly develop when the database

contains several levels of objects. The OODBMS provides the

capability to build these complex databases and to

manipulate them. This manipulation includes the ability to

add, delete, and modify nodes anywhere in the object-

oriented database (OODB) without impacting the rest of the

database. OODBMSs also provide the standard set of

facilities to search and retrieve data from the database.

2. RDBMS

RDBMSs use tables comprised of rows and columns to

store and relate data. The row and column headings provide

the means to define the data. The simple example of a RDBMS

shown in Figure 2 provides information on cars. The tables

Cars Owned
Car Make Model Type Color

1 Chevy Z28 , r3 5

2 GMC Jimp^ 4 5\

3// Sport

4/ SUV

Color
'5 Red

6 Blue

Figure 2: Simple Relational Database

20

provide a simple representation of two cars. The top-level

"Cars Owned" table provides overall data relating to the

cars. The "Type" and "Color" Tables are joined to the Cars

Owned Table. This joining mechanism defines how the

different tables are related. A relational database is

built through these relationships between multiple tables.

3. RDBMS/OODBMS Advantages and Disadvantages

It is the RDBMS's efficiency, simplicity, and ability

to support most database storage and manipulation problems

that makes it more popular and more widely used than

OODBMSs. This stems from the fact that RDBMSs have been in

existence longer and are more mature than OODBSs. The

primary disadvantage with RDBMSs is that when modeling

extremely complex relationships the RDBMS's efficiency can

be affected. OODBMSs can better represent these complex

database relationships.

C. XML AND DATABASES

Previous sections of this thesis describe XML and

databases. This section will describe the similarities and

differences between XML and databases. In most cases though

XML and databases (and related DBMSs) do provide similar '

data search and manipulation capabilities, it's just the

extent to which they employ those capabilities that defines

their similarities and differences. In general,

descriptions of database technologies apply to both RDBMSs

21

and OODBMSs. If the description specifically relates to one

or the other, it is specifically identified.

1. Similarities

Both XML and database technologies maintain data in

hierarchical, parent/child relationships. XML and OODBMSs

can maintain extremely complex, very deep relationships. As

discussed earlier, RDBMSs do not efficiently process these

complex relationships as well.

XML and database technologies provide the ability to

search and manipulate data. Since the DBMSs provide this

capability through their unique internal Schemas and query

languages they are very efficient in their execution. XML

provides the designer/developer a great amount of

flexibility in the design of their documents through the use

of internal or external Document Type Definitions (DTDs) or

Schemas, namespace definitions, etc. The XML document can

be just about any size and can retain an unknown level of

complexity. To cope with this flexibility of design, XML

employs open-ended languages and Application Programming

Interfaces (APIs) like XQuery, XPointer, XLink, and Document

Object Model (DOM) APIs to support this flexibility of

design. Certain speed of service inefficiencies result from

having to account for these open designs.

22

2. Differences

As described earlier, DBMSs provide a database

manipulation efficiency that is not found in XML. The

DBMS's efficiency stems from their strict definition of data

structure and the data search and manipulation capabilities

specifically tailored to that data structure. These

efficiencies of DBMSs and XML inefficiencies reflect the

fact that XML is not a DBMS.

XML provides a single structured view of the data as

defined by the DTD or XML Schema. Rearranging of the data

will require a corresponding modification to the DTD or XML

Schema. DBMSs retain the capabilities to easily modify the

structure of the database.

The XML document is basically a text-formatted document

that is independent of any particular platform or software

application. DBMSs store their databases in DBMS specific

formats. The DBMSs must be operated from very specific

computing platforms with specific software applications.

XML is not restricted by any document structure. It

can reflect any structure the designer desires. Databases

developed in DBMSs must adhere to specific database

structures.

3. Conclusion

This XML - database comparison demonstrates that though

there are differences between the two, the common thread

23

between them is the data. Each maintains and manipulates

the data in their own way. Recognizing the value of XML,

most DBMS manufacturers are beginning to integrate XML

resources and capabilities into their software. These XML

resources and capabilities will be described in detail in

the following section. An example of one XML capability

being integrated is an XML translator that supports the

translation from a specific database format into an XML

document. This allows the DBMS to take advantage of web

based functionality associated with XML.

D. COMMERCIAL DATABASE XML EFFORTS

The primary advantage for DBMS manufacturers for

integrating XML capabilities into their products is to

support web transmission and manipulation of their

databases. Another advantage is that the use of XML

simplifies inter-database transmission. In the past,

communications between different brands of database products

required the development of complex translators. These

translators translate the database from one database format

to another. While this solution worked, it also required

the translator to undergo costly rebuilds each time one or

the other DBMSs changed. XML provides the means to support

translation from one database format to XML and then from

XML to another database format.

24

Other XML capabilities being integrated include XML

parsers, XML storage, and XML document queries. This thesis

will briefly examine the XML capabilities being integrated

into the Oracle, Sybase, and Informix DBMSs. The XML

related information presented comes from each of the

manufacturers web sites.

1. Oracle

Of all the DBMS manufacturers, it appears Oracle is

investing in XML the heaviest. They have developed the

Oracle Internet Platform that provides integrated support of

internet standards, including XML and JAVA [ORCWS]. Oracle

8i contains a built-in JAVA Virtual Machine that can execute

Oracle's XML based components.

Oracle's interMedia Text can be used to perform

searches on XML documents stored in Oracle 8i. The

foundation for these searches are simple textual matching

algorithms that can be used on an individual XML document or

on the entire database that contains the documents.

Oracle provides the capability to store the XML

document in its original XML structure. This capability is

advantageous if the document does not have to be updated

often or if it has to be transmitted as a whole. Otherwise,

Oracle provides the capability to store the XML document as

data in the Oracle database format. This storage

25

alternative is beneficial if the XML document is undergoing

a significant amount of updates to the data.

Oracle stores the XML document in its database format

by capturing the attributes of the data elements in a

relational table and the objects are defined to convey the

XML document structure. The XML Structured Query Language

(SQL) utility provides the means to store and retrieve the

document from the database. Once stored in the database,

the data can be updated, queried, rearranged, reformatted,

and extracted as required.

Oracle Views can be used to store an object "on the

fly" by combining XML data stored in many ways. In effect

the XML document is stored twice in Oracle with each linked

to the other. This approach provides the ability to access

the entire document along with the data in the objects

defined in the database. The XML SQL provides the ability

to extract the assembled data as a single XML document.

Oracle provides several XML parsers to support JAVA, C,

C++, and PL/SQL applications. The parsers also provide

support to the Document Object Model, Simple API for XML

(SAX) interfaces, XML Namespaces, and Extensible Stylesheet

Language Transformation (XSLT). All of these parsers

provide XML document-validating capabilities.

Oracle utilizes XML to support exchange of data between

business applications. Oracle exploits the DTDs in the XML

documents to identify the common data elements and structure

26

to support sharing of the data. To share data from one XML

document to another, the structure and content of the data

being shared has to compare favorably between the two XML

DTDs. If the DTDs do not share common data elements or

structure, the necessary portions of one or both of the

documents are transformed using XSLT into a common format

thus allowing one document to share data with the other.

In the future, Oracle plans on expanding its XML

querying capabilities to enable not only identification of

the individual data elements but also the logical view

related to that data element. This will provide the

capability to search for specific data elements and/or

specific XML document structure.

2. Sybase

Sybase's Adaptive Server Enterprise 12.0 provides the

ability to create, store, retrieve, and query XML documents.

Based on the information provided in the Sybase web site

[SYBWS], Sybase provides an XML parser to ensure all XML

documents developed are valid. Once deemed valid, Sybase

provides the capability to store XML documents in relational

tables. The entire XML document can be stored as a whole or

as native text in text or image columns. Any XML

transactions can be mapped into new or existing relational

tables. Sybase provides integrated textual search

capabilities to query the document and to create XML

27

formatted query results for incorporation into XML

documents.

The JAVA capabilities, provided by Sybase's Server

Enterprise 12.0, can be used to incorporate any commercially

available JAVA-based XML tools.

The capabilities provided by Sybase are comparable to

those provided in Oracle. Perhaps the one advantage Oracle

has over Sybase is that their products are more widely used

in the commercial sector.

3. Informix

Informix intends on exploiting XML to support data

sharing. The initiative that supports this ability is the

Informix Internet Foundation 2000. This foundation consists

of their Informix Dynamic Server 2000 and a series of tools

to support Internet applications. The Informix Web

Datablade Module is the first of the modules that has been

created to support exploitation of XML [INFWS].

Informix provides the ability to create, store, and

query XML documents in their database. It also supports the

integration of XML documents with legacy data in the

database.

4. Summary

Each of the DBMS described above provides the ability

to store, search, manipulate, and extract XML documents from

their databases. This ability to extract XML documents from

28

databases significantly simplifies the process to execute

the XML based analysis method that will be described in

subsequent sections.

E. DEPARTMENT OF DEFENSE AND XML

As with the commercial sector, the Department of

Defense (DoD) has recognized the value of XML to aid in the

interoperability between dissimilar systems. They also

recognized the danger of several DoD organizations possibly

developing their own unique XML representations that could

hinder interoperability. As a result, the DoD has begun a

concerted effort to intelligently control XML development

and implementation as it relates to interoperability. One

means of control is the use of a DoD-wide XML Namespace

Registry to categorize and maintain common and reusable XML

elements.

Draft guidance entitled "Guidance on the Use of

Extensible Markup Language within DoD" [DISAOO] was released

on 29 Aug 00. The primary guidance states that the DoD will

implement a common DoD registry of namespaces. All

developers of XML documents will be required to review this

repository for reusable tags, elements, and constructs

before developing new ones. If new tags, elements, or

constructs are developed it should be determined if they are

reusable. If so, the developer should submit the reusable

components to the registry.

29

1. What is a Namespace?

Namespaces are used in XML to ensure uniqueness of the

XML elements. This ability to define uniqueness is

important in XML since it is this uniqueness that will allow

one element to be distinguished from another. The

extensibility of XML allows the XML document developer to

create any element desired. Problems can arise when an

element could be interpreted in multiple ways. The

following two examples demonstrate this problem:

Example A: Compare the following two XML documents
adapted from example in [BOUR00]:

<?XML Version="1.0"?>

<Address>

<Street>ll Mile</Street>

<City>Warren</City>

<State>Michigan</State>

<Zip>483 97</Zip>

</Address>

and

<?XML Version="1.0"?>

<PersonalID>

<Address>XXX@fake-email.com</Address>

</PersonalID>

30

Example B: Also compare the following two XML
documents:

<?XML Version="1.0"?>

<Tank>

<Type>Heavy</Type>

<Nomenclature>Ml</Nomenclature>

</Tank>

and

<?XML Version="1.0"?>

<Tank>

<Type>Water</Type>

<Capacity>500 USGal</Capacity>

</Tank>

One of the greatest advantages in using XML is that it

. allows the XML developer to develop the XML elements that

best suits their needs. This extensibility also can cause

problems. The two previous examples show how like terms can

define very different things. This is why namespaces are

required.

But what is a namespace? "XML namespaces are

collections of names, nothing more"[BOUR00]. Namespaces

provide the ability to develop unique identifiers for XML

elements. This can be demonstrated by reexamining the

previous examples that now incorporate namespaces:

Example C: Adapted from example in [BOUR00]:

31

<addr:Address
xmlns:addr="http://www.? ? ?.com/addresses">

<addr:Street>ll Mile</addr:Street>

<addr:City>Warren</addr:City>

<addr:State>Michigan</addr:State>

<addr:Zip>48397</addr:Zip>

</addr:Addre s s >

and

<serv:PersonalID
xmlns:serv="http://www.***.com/emailaddresses">

<serv:Address>XXX@fake-
email.com</serv:Address>

</serv:PersonalID>

Example D: Also compare that following two XML
documents:

<ArmyVehicle:Tank
xmlns:ArmyVehicle="http://www.$$$.com/vehicles">

<ArmyVehicle:Type>Heavy</ArmyVehicle:Type>

<ArmyVehicle:Nomenclature>Ml
</ArmyVehicle:Nomenclature>

</ArmyVehicle:Tank>

and

<Storage:Tank xmlns
Storage="http://www.@@@.com/Storage">

<Storage:Type>Water</Storage:Type>

<Storage:Capacity>500
USGal</Storage:Capacity>

</Storage:Tank>

32

The rationale for using namespaces is that it allows an

XML developer to freely distribute their XML documents to

others since the potential XML element conflicts will be

eliminated. The use of namespaces simplifies the process of

using XML to communicate data and in the case of the DoD, to

support interoperability since each element will be unique

and understandable per the namespace definition.

In Examples C and D the Unified Resource Identifier

(URI) (shown in bold below) identifies the namespaces:

<addr:Address xmlns:addr="http://www.???.com/addresses1^

URIs are used because they are a well-known system for

creating unique identifiers [BOUR00]. These URIs are

maintained by a singular owner/organization that has the

responsibility of defining the namespace common elements.

Recognizing the need for namespace ownership, the DoD

XML Guidance [DISAOO] states the following: "Once approved,

the namespace manager will exercise aggressive oversight of

his namespace." and "...the namespace manager

will...establish a registry and repository (R&R) of

namespace specific elements and constructs." The Namespace

Registry is a mechanism through which the relevant elements

and constructs can be registered to coincide with a specific

location that can be located through queries. The Namespace

Repository is the location where the registry resides and

33

from which they can be located and retrieved. The top level

XML Namespace R&R is maintained by Defense Information

Systems Agency (DISA) with the individual owners/namespace

managers responsible for their own particular namespace.

DISA's overall role in XML namespace management is

part of their management of the Defense Information

Infrastructure Common Operating Environment (DIICOE). The

DIICOE is a data environment defined to support

"...interoperability and software reuse in a secure,

reliable, and global networked environment"[DISAWS]. The

DIICOE's data service infrastructure employs "sets of shared

Schemas, data management and services, build-time and

runtime tools, server development and operating procedures,

and technical guidance for supporting COE-based mission

applications". The goal for the DII is to migrate from many

dissimilar data stores to a set of standardized COE

compliant data services.

DISA is using SHAred Data Engineering (SHADE) as the

DIICOE data emporium that maintains these COE compliant data

services. Contained within the SHADE is the XML Namespace

Registry.

2. DIICOE Namespace Registry

DISA's Namespace Registry standardizes a set of

elements developed, coordinated, and approved in the COE

community. The registry provides the user the ability to

34

search and retrieve these common elements. If a desired

element (or set of elements/constructs) cannot be located,

the user can submit a proposed element (or set of

elements/constructs) to the "Community of Interest" (COI)

[DISAOO] for consideration of incorporation into the XML

Registry. Currently there are 11 COI's:

COI Owner

COE Enterprise DISA-DIICOE Chief Engineer

Ground Operations Army-PM for JCDB

General Military

Intelligence

Defense intelligence Agency

Aerospace Operations USAF-AF Common Data

Environment Staff

Messages DISA-Chair USMTF CCB

Track and Reports Navy-Common Track Data Store Engineer

Geospatial & Imagery NIMA-NIMA Engineer

METOC Navy-Developer of Meteorological and

Oceanographic Models

Combat Support DISA-CCSS Engineer

Finance DFAS

Personnel DIMHRS

One of the XML COIs identified above is the Message

COI. This COI primarily focuses on the namespaces

identified to support ongoing XML-MTF effort led by the Air

35

Force. The COI provides a means to facilitate determination

of tag names for the corresponding XML translations of the

JCDB.

3. XML-MTF

The single largest XML effort ongoing in the DoD is the

XML-United States Message Text Format (USMTF) initiative.

This effort focuses on the capability to build XML

translations of USMTF messages and USMTF translations of XML

documents. USMTF is one of the message formats used to

convey data to the JCDB and MIDB.

USMTF is a text (character) oriented message format

used to support tactical and support communications.

Currently there are over 350 different message types used.

A primary objective for the USMTF program is to support the

production of messages that can be read by humans and

machines. In effect, USMTF is an artificial language that

employs a controlled vocabulary. This vocabulary allows the

user to develop messages that can be understood by both

humans and machines. This understandability is important

since the USMTF messages are used for inter-service and with

allied communications. The vocabulary is comprised of words

arranged in predetermined formats that convey specific

information based on the location of the words and their

meaning.

36

The syntax of the USMTF message defines how it is

structured. The basic structure is comprised of message,

sets, and fields. The natural language equivalents are

words, sentences, and text. The vocabulary, of an MTF

message consists of formats for the fields, sets, and

message. The terms that complete these fields are

represented by field contents, set format identifiers, and

message test identifiers.

The structure, semantics, and syntax are defined in

MIL-STD-6040. It is this standard that defines the USMTF

schema. The following example displays how USMTF messages

can be structured. The following example shows a USMTF

columnar structured messages [AMP99]:

UNCLAS

EXER/OLIVE DRAB 99//
MSGID/SITREP/AFOP-JT//
REF/A/ORDER/CTG122.4/161500ZJAN1999/0101006//
PERID/172000Z/TO:181800Z/ASOF:171800Z//
MAP/1501/11/1/6-GSFS//
HEADING/ENEMY//
AMPN/LIGHT RESISTANCE, ENEMY CASUALTIES UNKNOWN//
5EUNIT
/DE/CY/ACTTYP/ENUNIT /UNITLOC /TIMPOS
/01/RS/DEPLOY/345 MTR RFL DIV/RIDGELINE CHARLIE /171200Z//
HEADING/OWN SITUATION//
BNDLINE/FEBA/50QRD9910992 0/50QRD99309940/50QRD99509960/50QRD
99809908//

BT

#0009

37

4. Problems with USMTF

A major problem with USMTF messages is that they can

not be uniformly exchanged between all C4I systems. There

are several C4I systems fielded that don't use USMTF as the

means to communicate. A common COTS based method of

representing messages would improve interoperability between

C4I systems.

A second problem is that USMTF is a government managed

standard that has been in use for many years by all services

and many allied commands. The USMTF related software has to

be developed, fielded, and maintained at significant cost to

the government. It was realized that there could be

advantages in pursuing commercial-off-the-shelf (COTS) based

alternatives for USMTF. Cost savings could be realized from

adopting a COTS based alternative since a wider variety of

systems might be able to recognize a COTS based version of

USMTF messages.

Another problem with USMTF messages is that they can

not be easily read [HOP99] . As can be seen from the USMTF

example the message is not inherently readable unless you

have a detailed understanding of the USMTF vocabulary.

A final problem is that USMTF messages can not be

easily prepared and are subject to errors. Extensive use of

MIL-STD-6040 and other references is required to prepare the

messages.

38

5. XML-USMTF Mapping

In 1998, Mitre Corporation working for the Air Force

began to investigate if XML could be employed to deal with

the USMTF problems described previously. It was determined

that XML could provide an alternative method to represent

USMTF data and structure. It was also accompanied by other

COTS/XML based resources/capabilities (like XSLT) that

supported transformation of that data. The alternative,

called "XML-MTF" provides several benefits [HOP99]:

- XML-MTF provides improved flexibility when displaying

data. Extensible Stylesheet Language (XSL) can be used to

reorganize and reformat the data to simplify

understandability. In fact, innovative stylesheets could be

created to ensure battle commanders could visualize a common

operational picture no matter what system they were using.

- Software maintenance cost savings could be realized

through the use of COTS based XML-MTF parsers. The COTS

based parsers could run on COTS platforms and reduce

reliance on costly legacy software and hardware.

- XML-MTF could utilize the same network transmission

protocols as the World Wide Web. This would allow the XML-

MTF documents to be transmitted over commercial networks as

easily as HTML.

- XML-MTF could be used to simplify common data updates

to dissimilar databases. A single database could be used to

39

"push" common data to the different databases. This would

ensure the data was consistent throughout all the databases.

The alternative requires individual development of database

updates for each type of database (i.e., AFATDs database,

MIDB, TDBM database, etc.).

XML-MTF Mapping is the primary product of the XML-MTF

effort. XML-MTF Mapping consists of the definition of the

formatting rules for the XML-MTF messages. These rules are

included in Appendix A of MIL-STD-6040. The design goals

guiding the XML-MTF Mapping effort are [MAPOO]:

• XML-MTF shall be easy to read and understand.

• XML-MTF shall be designed to ensure widespread
military adoption by accommodating current MTF
standards.

• XML-MTF should be easy to construct from basic rules
mapping to MTF formats.

• XML-MTF Schemas should be easy to construct.

• Operations to XML-MTF messages should be resilient
to schema change.

• XML-MTF shall draw as much as possible from industry
standards.

The details of how XML-MTF Mapping is being developed

can be found in the XML-MTF Mapping Third Public Working

Draft [MAPOO]. Below is an example mapping a portion of an

MTF message to XML-MTF taken from an XML-MTF Update Brief

[XMLMPOO]:

40

41

MSGID/TACREP/CTF 124//
MAROP/011800Z/1/US/SUB/CL:WASHINGTON/NAME:SEAROVER
/LM:4040N01100E//
OPSTIP/Arrrrvp-Asw//
AIROP/020200Z/6/US/FTR/F 15/TN:401/LM:4130N01OOOE/CRS: 180/SPD:60QKPH |
/ALT:12000FT//
OPSUP/ACTTYP:DCA//

TACREP

— MSGID

_j— MAROP

"~L— OPSUP

r-| AIROPlI-
I nPQTTP - OPSUP

- 020200Z

- 6

-US

FTR

- F15

- TN:401

<air_operations_data>
<day-time> 020200Z </day-time>
<quantity> 6 </quantity>
<country> US </country>
<subject_type> FTR </subject_type>
<aircraft_type> F15 </aircraft_type>
<track_number> 401 </track_number>

</air_operations_data>

Figure 3: MTF-XML Mapping Example

This XML-MTF Mapping Effort has developed XML-MTF

Translators to simplify the translation process. These

translators translate from MTF to XML-MTF and from XML-MTF

to MTF. The XML-MTF Mapping Effort continues to refine and

expand the XML-MTF Mapping and is pursuing NATO adoption of

this process.

Other XML-MTF mapping information can be found in

Lieutenant Todd Ehrhardt's and Captain Brian Lyttle's thesis

entitled "Interconnectivity Via a Consolidated Type

Hierarchy and XML" [EHLY01].

6. Other DoD XML Messaging Efforts:

Based on the success of the XML-MTF initiative, DoD

has initiated the XML-OTG Mapping initiative. The full name

41

for OTG is Operational Specification for Over the Horizon

Targeting Gold (OS-OTG) . Like USMTF, OS-OTG is a character

oriented messaging standard and is used primarily in naval

communications. The primary differences between USMTF and

OS-OTG are in the message structure, syntax, and rules.

The similarities between USMTF and OS-OTG allowed those

executing the XML-OTG Mapping effort to leverage the

previous XML-MTF Mapping. The first XML-OTG Mapping Working

Draft, released 31 August 2000, bears a remarkable

similarity to the XML-MTF Mapping Working Draft. In those

areas where USMTF and OS-OTG are the same, the mapping

approaches used in the XML-MTF Mapping were adopted in the

XML-OTG Mapping Working Draft. The remainder of the XML-OTG

Working Draft identifies the various differences between

USMTF and OS-OTG and then identifies corresponding mapping

approaches to resolve those differences.

Other messaging formats are now being examined to

determine if they are candidates for XML mapping. The

Variable Message Format (VMF) is one of those being

investigated. An XML mapping to VMF is more difficult to

develop because VMF is a "bit-oriented" messaging standard

as opposed to the "character-oriented" structure of USMTF.

Also most fields contained in USMTF messages are fixed in

length whereas VMF messages have fields can be vary in

length. A VMF can be only a few bits in length or can be

several Mbits in length.

42

There are four alternative XML applications being

considered for VMF [XMLVOO]:

• Case 1: Develop a VMF to USMTF to XML-MTF Mapping.

• Case 2: Develop a VMF to XML-VMF mapping.

• Case 3: Develop generic XML Schema to support all
VMF message definitions.

• Case 4: Use compressed XML-VMF document using COTS
XML compression tools.

A decision will be made on the viability of XML-VMF

mapping once these alternatives have been examined in

detail.

7. XML Mapping Caveat

Significant problems arise with all of these XML to

message format mapping initiatives. Focus must be placed on

development and adherence to the standards defining the XML

mapping (e.g., XML-MTF mapping) [HOP99]. If the standards

are not strictly followed, the flexibility provided by XML

can produce different system implementations of the XML

mapping. The differences in implementation, no matter how

slight would results in severe interoperability disruptions.

Detailed specifications must be developed and followed

by all systems implementing the XML mapping. This is the

only way full interoperability can be achieved between all

systems using XML.

43

F. PREVIOUS DATABASE ANALYSES METHODS

1. Research Preparation

This thesis is part of a larger NPS research team

supporting several related database analyses research topics

as defined in the Joint Battle Management Initiative

Assessment Plan Draft [JBMIOO].

I teamed with Mr. Hamza Zobair to research the XML

Schema Investigation topic as described in Section I.E. The

objectives for this research were:

- Determine methods for assuring scalability of

solution to legacy and migration C4I. This requires a

method(s) that can support analysis and comparisons of both

legacy and evolving common databases like JCDB.

- Determine what parts of a legacy system view

could be materialized from previous shared Schemas. This

requires the identified method(s) to be able to identify

common elements and physical Schemas.

Determine how to materialize those parts

relevant to such an assessment. This requires the

identified common data elements and Schemas be integrated

into a global common schema.

Our original research methodology was to jointly search

for the required databases and any XML based analysis

Schemas we could find. Once found, these methods would be

divided between the two of us and used to examine/compare

44

the identified databases. I was responsible for attaining

and examining the AFATDS database and JCDB. Mr. Zobair was

responsible for attaining and examining the MIDB and TDBM

database.

2. Roadblocks Encountered During Research

The greatest challenge encountered during this research

effort was trying to obtain a copy of the AFATDS database.

It was quickly discovered that some of these legacy system

databases are closely held products. After significant

effort on my part, by other researchers on the team, and by

NPS, the AFATDS database proved unattainable.

Representatives from JBC also tried and failed to get a copy

of the AFATDS database for this research effort. These

efforts to get the AFATDS database spanned several months.

The JCDB, however, was provided in multiple versions at the

start of the research effort. Being able to attain only one

of the two databases required to execute this

analysis/comparison research efforts presented the first

major roadblock encountered in this research effort.

The second major roadblock encountered in this research

effort was hit while searching for XML based database

analysis Schemas that could be employed in analysis of the

four specified databases. Our efforts focused on searching

electronic technical libraries like ACM, IEEE, Society for

Automotive Engineers, NPS's Dudley Knox Library, and Defense

45

Systems Management College Library for any related XML based

database analysis Schemas. The Tank-Automotive Research,

Development, and Engineering Center's (TARDEC's) Technical

Library was also employed to search out pertinent database

analysis schema. The TARDEC Technical Library has (and

used) automated search resources that searched several

electronic technical libraries.

These searches did locate several technical papers

describing database analysis techniques. Most were written

in the early to mid 1980's. These papers focused on

database analysis to support activities like data mining,

data warehousing, and database integration. Most papers

examined different aspects of the types of analysis methods

that could be employed to support this research effort. The

specific methods sought were ones that could distinguish and

identify common data elements and physical Schemas between

heterogeneous C4I databases.

The located technical papers generally fell into three

categories:

- Data Element/Data Hierarchical Searches: These papers

provided the means to decompose the construct of a database

schema, allowing the extraction of specific data elements

and parent-chiId related data elements.

Data Element Comparison: These papers describe

methods of comparing multiple databases to locate common

data elements in multiple databases.

46

- Database Integration: These papers usually examined

methods to combine two databases into a single database.

Only one technical paper was found that described a

method that would examine/compare the data elements and

hierarchical relationships of two databases. Entitled

"SEMINT: A tool for identifying attribute correspondences in

heterogeneous databases using neural networks"[SEM99], this

paper examined most of the database analysis/comparison

techniques sought in this research effort.

The problem with all of these papers is that none

employed XML to support the database analysis and

comparison. This was not a great surprise since most of the

papers were written long before the 1996 inception of XML.

But this led to the second major roadblock encountered in

this research effort: How can an XML schema investigation of

databases be conducted when no XML based analysis methods

can be found?

3. An Opportunity for a New Analysis Method

Faced with these two major roadblocks, the objective

for this thesis was refocused towards examining how XML

could be employed in the development of an XML based

database analysis and comparison method that would still

meet the original objectives of this research effort. With

the continuing development (and refinement) of XML and its

associated XML based capabilities (i.e., XSL, DOM APIs,

47

Infoset, etc.), the tools are available to define a new XML

based C4I database analysis and comparison method. The

remainder of this thesis will describe and demonstrate this

new XML based C4I database analysis/comparison method. An

additional objective for this method was to ensure it had

broader application beyond C4I databases. This new method

can be used to analyze and compare any XML document.

48

IV. XML BASED ANALYSIS AND COMPARISON METHOD DESCRIPTION

A. INTRODUCTION TO PROCESS

The original JBC/NPS research task was to determine

methods to seek out XML methods for assuring scalability of

XML solutions to legacy and migration to C4I database

Schemas [JBMIOO]. As was briefly described in the previous

section there are no XML based methods available to analyze

database Schemas. To ensure that the overall objective of

this research effort was met a new, XML based database

analysis and comparison method has been developed and will

be described in this thesis.

1. Focus of Process

This process sought to demonstrate how XML can be

exploited to analyze and compare common Schemas between

heterogeneous databases. It focused on the use of XML COTS

software whenever possible to execute the analysis and

comparison. This process also sought to reduce reliance on

any legacy software.

The XML based analysis and comparison process

description was divided into a sequential step by step

process. Each step description began with a description of

the components necessary to execute the process. These

component descriptions focus on the individualized database

49

views to be analyzed along with the software, tools, and/or

XML resources required to execute the analysis.

The process is described using the defined component

and reinforced using examples whenever possible. The most

detailed of these examples occur at the end of the process

where views of the JCDB and MIDB are analyzed and compared

using COTS based tools. The products of these analyses and

the code developed to execute the analyses are included in

the appendices of this thesis.

In some steps alternative analysis paths are available

to the recommended analysis path. When this happens these

alternative paths are briefly described, highlighting their

benefits/ shortfalls and why they weren't included as part

of the recommended process.

2. Database Analysis Aspects Not Covered

The JCDB and MIDB were not analyzed as part of this

research effort. This is because the unique system specific

database software was not available and the size of the two

databases prevented detailed comparisons using existing

computing resources. This is also because some the database

information was unavailable. Instead this research effort

focuses on smaller views of portions of the databases.

These smaller views actually help facilitate the description

of the analysis process.

50

Since required database software (i.e., Informix,

Sybase, etc.) was unavailable or could not be used, examples

supporting that particular step had to be built manually.

When this was done it is identified as being a manual

equivalent. The intent was to provide as detailed examples

as possible and to support the description of the process.

Detailed description and analysis of the JCDB and MIDB

are not provided as part of the research effort. This is

because limited information was available on these

databases. This was especially true for the MIDB. The

portions of the MIDB extracted to build the MIDB View had to

be built solely from the MIDB Data Dictionary. There were

no entity relationship diagrams available to support

definition of the database hierarchy. These relationships

were drawn from the data dictionary.

Analyzing the entire JCDB would also be difficult due

to its size. A JCDB View was built to simplify the analysis

description. Also to strengthen the process description it

was best to have a JCDB View equivalent in size to the one

built for the MIDB.

B. DATABASE REVIEW STEP

This step will be where the databases to be analyzed

are assembled and evaluated for completeness. The goal for

this step is to have both databases roughly at the same

level of detail. The term "level of detail" simply means

51

that the same type and detail of information is available

for each database to be analyzed and compared. For example,

if one database contains information describing the data

type of the database attributes and the other database

doesn't then it will be impossible to conduct a comparison

of attribute data types between the two databases. It is

best to balance the level of detail between databases

whenever possible. This will ensure the analysis and

comparison is equitably executed between both databases.

Balancing the level of detail requires close inspection

of all documentation available on each database. Generally

the available documentation is available in two forms.

First is the database's Data Dictionary that provides

database schema and implementation information to support

standardized database development and data usage [JDDOO].

The data dictionary provides detailed information on the

entity table and associated attribute and the associated

relationship descriptions between then. For especially

large databases, like JCDB and MIDB, using these

relationship descriptions to identify relationships between

more than a few entities is difficult.

To help alleviate this problem large databases also use

Entity-Relationship Diagrams as the second form of database

documentation. The diagrams provide graphical

representations of the relationship hierarchy built into the

database. For the purposes of this research these entity

52

relationship diagrams will focus on the logical

representation of the data. This logical representation

represents the inherent structure of the data, independent

of the individual application [DOD98].

To balance the level of detail a visual inspection

review and comparison between each of the data dictionaries

and entity relationship diagrams must be conducted. If

roughly the same information is available between the

databases we can proceed to the next step in the process.

When the difference in the level of detail between the

databases is significant it can jeopardize the analysis

effort. There are two alternatives available if this should

be the case:

One alternative would be to limit the subsequent

analysis and comparison to only those portions of the

databases that have the same level of detail. For example,

if entity relationship information is not available for one

database, the analysis and comparison can be limited

executing an entity to entity comparison.

A second alternative would be to develop additional

detail in the database lacking detail through searches for

additional documentation or consulting with subject matter

experts (SMEs). This additional data, if discovered, may

have to be manipulated into a format that is comparable to

the other database.

53

1. JCDB/MIDB Comparison

In this research effort the JCDB and MIDB were chosen

for comparison. Smaller portions of the two databases were

chosen to execute this analysis and comparison effort. This

was done for the following reasons:

Database Size: The extremely large size of the two

databases would add unneeded complexity and confusion to the

description of this analysis and comparison process. It was

best to focus on portions of the databases that can best be

used to describe the process.

Limited Access to Data: Specific software called

"ERwin" was required to view the JCDB logical

representations. This researcher was only able to gain use

of a limited two-week trial version of the ERwin viewing

software. This trial version of the software limited the

amount of entity relationship detail that could be extracted

from the JCDB logical representation.

MIDB Entity Relationship Diagram: The entity

relationship diagrams for the MIDB could not be located for

this research effort. The logical representations of the

smaller portions of the database built had to be constructed

from the MIDB Data Dictionary relationship descriptions. It

would have been impossible to build the entity relationship

diagrams for the entire MIDB. For the purposes of this

research effort I was required to make certain assumptions

54

in the development of these entity relationship diagrams

that could result in slight deviations from the actual

relationships contained in the MIDB.

To develop these entity relationships diagrams the DoD

8320.1-M-l Data Standardization Procedures and the

Integration Definition for Information Modeling (IDEF1X) was

used as a means to standardize the logical representation of

the database entities.

DoD8320 provides the procedures for developing,

approving, implementing, and maintaining DoD data standards.

These data standards provide the framework for how the data

will be formatted for implementation within the information

system [DOD98]. The IDEF1X defines how to produce a

graphical information model that represents the structure

and semantics of information within an environment or system

[IDEF93].

2. JCDB View

To build the JCDB View, portions of the JCDB were

extracted from the data dictionary based on the limited

entity relationship diagrams available. The entity

relationship diagrams were reviewed and modified slightly to

better conform to DoD 8320 and IDEF1X. Examples of the

extracted portions from the JCDB Data Dictionary and

associated entity relationship diagram can be found in

Appendix A.

55

3. MIDB View

After extensive review of the MIDB Data Dictionary,

portions were extracted that were similar in nature to the

extracted portions of the JCDB. These portions focused on

the Target Assessment and Battle Damage Assessment Report

(BDAR) .

Since no MIDB entity relationship diagrams were

available, one had to be developed from the relationships

described in the data dictionary. Appendix B contains

examples of the extracted portions of the data dictionary

and the developed entity relationship diagram.

4. Conclusion

With the completion of this step there are now two

database views that contain approximately the same "level of

detail». As describes earlier, this will ensure subsequent

analyses and comparisons are based on comparable data.

C. DATABASE CONVERSION TO XML

The two or more databases with roughly the same level

of detail, developed in the last step must now be converted

into XML documents. This is relatively simple process if

the database software (i.e., Informix, Sybase, etc.) retains

an integrated XML translation capability. As described in

Section D, many of the database software manufacturers are

integrating XML translators in one form or another to

support internet applications of their databases. For the

56

purposes of this research, the conversion to XML provides

the common basis upon which the analysis and comparison can

be executed. This conversion also supports one of the

primary objectives of this research effort to bring XML into

the analysis and comparison process.

1. Database to XML Translation

If the database software in question has an XML

translation capability, then the XML translation of the

database to be analyzed requires the analyst to execute the

translation process as specified by the database software.

Before converting the databases, each database to XML

translators should be reviewed to confirm they conform to

the same XML Recommendation. Currently, only XML

Recommendation 1.0 has been released. In the future, as XML

Recommendation 1.0 is updated, there may be situations where

older database software products maintain translators built

to outdated recommendations while newer database XML

translators are built to the latest recommendation.

It is critical that automated methods, like the built-

in XML translators, be used to translate databases like JCDB

and MIDB. The size and complexity of these databases would

make any manual XML conversion impossible. Additionally,

the XML document equivalent of the database would be even

larger. In Joint Battle Management Initiative (JBMI)

experiments conducted in July 2000 it was estimated that the

57

XML equivalent growth from a USMTF message was approximately

10 to 1. While USMTF is not a database, it still has to

maintain specific data type and structure to convey a

specific message. Likewise a database maintains specific

entity and attributes in a specific structure.

Additionally, the database must maintain the relationships

between these entities to convey the hierarchical

parent/child relationships. It can be hypothesized that the

XML growth for relational databases like JCDB and MIDB would

be even greater than 10 to 1. This was one of the reasons

smaller views of the databases were extracted for use in

this research project.

Once translated, portions of each XML document should

be manually examined to ensure the translations were

executed as expected. This manual inspection would require

cross-checking between the database data dictionary, the

entity relationship diagrams, and the XML document to ensure

the entities, attributes, and hierarchical relationships are

captured in the XML documents. Only one or two portions of

the database and XML document needs to be examined to ensure

the translation was successfully completed. This step is

completed once all the databases have been converted into

XML documents and they have been successfully reviewed.

58

2. XML Translation Alternative

An alternative automated translation process is

required if the particular database software product does

not have an XML translation capability or when the manual

inspection of the translated XML document resulted in

unacceptable documents.

This alternative focuses on utilizing Microsoft's Open

Database Connectivity (ODBC) APIs built into most database

software products. The ODBC APIs, based on Structured Query

Language (SQL) , provides call functions that can be used by

database software products to manipulate the particular

database [ODBCWP] into an ODBC structure. Then a shareware

product called 0DBC2XML can be used to convert an ODBC

formatted database to XML. Being that 0DBC2XML is shareware

there is no assurance that the converted XML document fully

represents the database. A thorough examination of XML

documents must be made to ensure its validity. For the

purposes of this research this conversion alternative will

not be examined further.

3. JCDB and MIDB to XML Translations

Without access to any of the necessary database

software products (or the specific databases) it was

impossible to execute either of these translation

alternatives. This does not impact this research since as

described earlier, this step in the process is an automated

59

process using resources already built into the database

software product.

As an alternative the XML documents to be used in this

research project were manually developed from the JCDB and

MIDB views included in Appendix A and B. Due to the lack of

data on the JCDB and MIDB, certain assumptions had to be

made when developing these XML documents. These assumptions

centered on defining certain hierarchical structures of the

XML document and the data contained in the XML documents.

These assumptions do not impact objectives of the analysis

and comparison process, which is to demonstrate how common

XML based schema can be extracted. Another assumption made

while developing these XML documents was to exclude the

development of DTDs or XML Schemas. Including or omitting

the DTDs and Schemas do not impact this analysis and

comparison process. In the case of this research effort

they only add additional complexity that might distract from

the process description.

4. Conclusion

This step is completed with the development of multiple

well-formed and comparable XML documents. The JCDB and MIDB

XML documents are included in Appendix C and Appendix D.

These documents provide a common basis upon which analysis

and comparisons of two (or more) databases can be executed.

60

D. ENTITY/ATTRIBUTE ANALYSIS AND COMPARISON

As described in Section I, the original objective of

this project was the execution of an XML based analysis and

comparison of the AFATDS, GCCS TDBM, GCCS 13 (MIDB), and the

JCDB. I teamed with Mr. Hamza Zobair to accomplish this

task. Due to difficulties described Section III.F.2 we each

decided to broaden our research topic to define our own

analysis processes of the JCDB and MIDB. Mr. Zobair chose

to research a process to analyze and compare database

entities and attributes. I chose to research a process to

analyze and compare the hierarchical relationships of the

databases. Both analysis methods are required when

comparing and locating common portions of databases.

1. Introduction

This step in the overall XML-based analysis and

comparison process was researched and described by Mr. Hamza

Zobair in his thesis entitled: "An Approach for Matching

Corresponding Attributes in . Legacy Heterogeneous DoD

Databases" [HZ01]. This process to conduct an entity and/or

attribute analysis and comparison will only be briefly

described in this thesis. I highly recommend reading Mr.

Zobair's well-written thesis for the full description of

this analysis process.

61

2. Process Description

This step in the overall XML based analysis can be

conducted prior to or in parallel with the previous steps

described so far. The basis for comparing the entities

and/or attributes of databases is the entity and attribute

tables located in the database data dictionary. The first

step in the process requires the restructuring of the tables

into comparable structures. Depending on the amount of

restructuring and size of the tables, this can be a very

time consuming process. It is recommended that automated

methods be used whenever possible.

Once restructured, the tables are compared using

automated comparison tools. These tools would search and

compare the tables and identify potential matches of common

entities and/or attributes. These tools employ user

developed thesauruses and data clusters as the basis to

execute the entity and attribute comparisons.

Once potential matches are identified, the matching

criteria are refined based on a manual review of the

matches. A final analysis is then conducted to identify the

best possible matches. These matches are then reviewed by

domain experts to validate or discount the matches.

3. Conclusion

Mr. Zobair's research examined the attribute tables of

the JCDB and MIDB. These attribute tables are significantly

62

more complex than the entity tables. The same analysis

process would be used to analyze and identify common

entities.

These identified common entity and attributes become

the "search keys" critical to the remainder of the database

analysis and comparison. The use of these search keys will

significantly simplify the search of the extremely large XML

documents built from the databases.

Finally, it must be stressed that to fully understand

this process it is important that Mr. Zobair's thesis be

reviewed.

E. HIERARCHICAL EXAMINATION

At this point in the process it is important to review

what has be an developed so far:

• Establishment of two or more databases that have
been reviewed and determined to be roughly
comparable.

• Development of XML documents built from the
comparable databases. If built from the JCDB and
MIDB, these documents would be very large.

• A list of search key developed through the entity
and attribute analysis.

What is required now is an automated process to search

these large XML documents to locate desired portions of the

database based on given search keys. Once the desired

entities and or attributes are located this process must

63

then be able to extract and present them to an SME that has

a detailed understanding of that portion of the databases.

This identification and extraction process must be able

to maintain the hierarchical composition of the XML

document. This is the overall objective of the research

effort, identification, extraction, and comparison of

specific hierarchical relationships of multiple

heterogeneous databases.

One of the reasons for converting the databases to XML

documents is that there are XML based tools/resources

available to examine and manipulate the hierarchical

composition of XML documents. The key XML based resource to

be used in this research effort is called the Document

Object Model (DOM).

1. What is a DOM?

From the W3C DOM web page, the DOM is defined as "...a

platform and language - neutral interface that will allow

programs and scripts to dynamically access and update the

content, structure, and style of documents. The document

can be processed and the results of that processing can be

incorporated back into the present page." [W3CWP] More

simply put, the DOM is a specification that defines how an

XML (or HTML) document can be parsed into a node tree

representation of that document and analyzed.

64

The node tree representation of the document begins

with the root element of the XML document set as the root of

the tree. The children of the root branch out to nodes.

They are called "nodes" because each of the XML document

components is parsed into their own individual node. Each

node object implements a node interface. The following

figure shows all the node interfaces that can be used to

build a DOM node interface tree [XMDBOO].

DocumentFragment

Document

DOMImplementation

NodeList

Node

NamedNodeMap

Element

Attribute

CharacterData

Text *■ CDATASection

DocumentType

Comment

Notation

Entity

EntityReference

Piocessinglnstructions

Figure 4: DOM Node Tree Components

These node interfaces provide the points where the DOM

node tree can be navigated and manipulated. Scripting

languages, like JavaScript, can be used to invoke DOM APIs

65

that provide the means to move through the tree and modify

it. An example how this works will be described later.

a) DOM Recommendations

The DOM Recommendations are managed by the W3C.

The W3C is a consortium of over 500 members from 34

countries that produce standards setting, interoperable

technologies through consensus. Their membership is

comprised of industry, government, citizens groups, and

other organizations committed to the development of the Web

[W3CWP]. The objective document the W3C publishes is the

"recommendation" as the defining and locked document that

describes a specific web based technology (e.g., DOM). When

developing the recommendation, a W3C technical working group

made up of experts in that technical field, posts the

working documents called specifications to the web site.

Anyone is welcomed to submit comments on the specifications.

Through consensus the working group determines what

specification modifications are required based on their own

individual developments and submitted comments. Once a

specification is finalized and approved by the working group

it is posted as a "recommendation". The DOM Recommendations

provide the interface definitions for the DOM API libraries.

The W3C has posted three levels of DOM Recommendations and

Specifications.

66

The DOM Level 1 Recommendation, issued on 1 Oct

1998, defines the foundation set of interfaces to navigate

and manipulate the XML (and HTML) documents. A second

edition of the DOM Level 1 specification is now under

development and is posted on the W3C Web Site for review.

The DOM Level 2 Recommendation builds upon the DOM

Level 1 Recommendation by defining additional interface

definitions. It includes a style sheet, object model, and

defines functionality for manipulating the style information

attached to a document. It also provides support for XML

Namespaces [RCWP]. The Level 2 Recommendation is comprised

of the Core View, Style, Event, Traversal-Range

Recommendations all issued 13 November 2000.

The DOM Level 3 Specification (not a

recommendation yet) will define loading and saving

interfaces and content models with validation support. Also

to be addressed will be document views, formatting, key

events, and event groups. The Level 3 Specification Working

Drafts posted are the Core (posted 1 September 2000);

Content Models and Load and Save Interfaces (posted 9

February 2001) ,- and Views and Formatting (posted 15 November

2000).

67

b) DOM Example

An example of a DOM Node Tree can be built from

the following XML document (adapted from example in

[XMDBOO]):

<Vehicle>

<Tank id="123">Ml</Tank>

</Vehicle>

Document
Node Document Root

Node
List

Element
Node <parent>

Node
List

Element
Node <child>

Named
Node
Map

Attribute
Node id="123"

Node
List

Text
CharacterData

Node
Ml

Figure 5: DOM Node Tree Example

The nodes in Figure 5 present the objects and

interfaces where the DOM can be examined and manipulated.

Each box is considered a node object. The names in the

boxes are the interfaces that will be implemented by the

68

objects. The NodeList object controls a list of nodes below

it. This NodeList will change as nodes are added or

deleted. The NodeNamedMap controls unordered sets of nodes

referenced by their attribute names. The NodeNamedMap also

changes based on the addition and deletion of nodes.

c) Examples of Interfaces

The following are examples of the interfaces

related to various node objects. The most fundamental

object in the DOM is, of course, the Node. The node retains

certain properties and methods that will allow the traversal

of the tree, obtaining specific information on the node, and

manipulating the node. The following are a few of the node

properties (adapted from . [XMDBOO]) :

Property Description

nodeName Returns value of specified node.

nodeType Returns type of specified node.

childNodes Returns the node list of specified node.

If no children, returns empty node list.

previousSibling Node immediately before current node.

nextSibling Node following current node.

Using the properties listed in the table the

following: "previousSibling.nodeName" would return the name

of the previous sibling's name. The employing of the

69

properties "nextSibling.nodeValue" would return the value of

the following sibling node.

These two examples provide demonstrations of how

the DOM can be navigated. The properties "previousSibling",

"nextSibling", "parentNode", "firstChild", and "lastChild"

are the primary means used to navigate through the DOM node

tree.

Besides the properties, the node also has methods

that can be used to manipulate the DOM. The following table

provides some examples:

Method

insertBefore(newChild,

refChild)

Action

Inserts new child before current

reference child.

replaceChild(newChild,

oldChild)

cloneNode(deep)

Replaces old child with new child.

Returns the old child.

Returns a duplicate of node. Deep

is a boolean value. If false,

returns node. If true, the node and

entire subtree under the node is

returned.

The properties and methods listed are only a few

of those available in the DOM Recommendations and

Specifications.

70

d) Products Employing DOM APIs

With the DOM Recommendation (DOM Level 1) only-

being available for just over two years only a few

commercially available DOM tools and applications have been

developed. Probably the most basic and most universally

available is Microsoft's Internet Explorer 5.0, which has

integrated an XML parser and DOM APIs (Note: Netscape also

has integrated a limited XML parser and DOM APIs) . The

reason Microsoft has been able to integrate XML parsers and

DOM APIs before other manufacturers is because they began

their integration efforts long before the actual

recommendations had been approved. In some cases, they

risked building in XML and DOM capabilities based only on

requirement documents.

Besides Internet Explorer, there are other DOM

tools available. A few of these DOM products were listed on

the web. Even though most of these DOM products have unique

platform/software requirements that prevented detailed

investigations in this research effort they do demonstrate

that DOM APIs are being widely adopted for use in the XML

community. As the other DOM Recommendations are released

the number of DOM products/application will surely grow.

e) Problems With DOM

The primary problem with DOM APIs is that when a

DOM node tree is created it can be 5-10 times the size of

71

the originating XML document. Earlier I hypothesized that

an XML document built from a database like JCDB could easily

be 10 times larger [XMDB00]. Combine the growth from

database to XML document to DOM node tree and the final DOM

tree could be 100 times the size of the original database.

Another problem with using DOM APIs is that they

are still evolving. There are still several specifications

defining new APIs undergoing revision. Additionally, the

DOM Level 1 Recommendation is already undergoing revision in

its second edition. Potential developers desiring to

integrate DOM APIs may continue to wait until all the DOM

APIs become more stable.

f) DOM Problem Solutions

Memory Usage: The DOM memory usage will become

less of a problem as the computing technologies continue to

grow. Personal computers with 1.5 Ghz processors, 300 MB

RAM, 100 GB hard disks, and 500 GB DVD read/write drives can

be purchased today. These computing capacities can be

expected to double each year for the next several years.

With this level of computing power/capacities available to

anyone, the size of the DOM should not be a problem.

Unstable Recommendations: Recognizing the

potential of DOM APIs, large software developers, like

Microsoft and Netscape, have already integrated DOM

capabilities into their browsers. This was even before any

72

recommendations had been approved. As XML grows in

acceptance, so will the use of DOM. Software developers

will have to commit to incorporating DOM APIs into their

products if they want to take full advantage of the XML.

Alternative to Using DOM: Another method available

to search and manipulate XML documents is to use the Simple

API for XML (SAX). The SAX is an event-based interface that

serially processes XML documents and notifies the

application calling the SAX when a certain event has

occurred. The DOM on the other hand loads the entire

document into memory and manipulates it. The SAX's serial

processing approach eliminates the memory burden associated

with the DOM. It also allows the SAX to process an XML

document of any size. Another benefit to using SAX is that

it provides several APIs to navigate and manipulate an XML

document.

The use of SAX does have shortcomings. First is

that SAX is not associated with any standards and/or

consortium bodies like the W3C. As a result, the SAX has no

design stability since the SAX can be changed at any time.

Another problem with using SAX is that complex searches of

XML documents are difficult. Since the SAX process the XML

document serially, multiple searches might have to be made

to find a single element. For example, suppose a parent

element of a child element must be found. The SAX would

have to process the XML document to find the child element

73

and then process it again to find the parent element. This

will increase the SAX's overall processing time of an XML

document.

g) Selection of DOM API

During this research effort both the DOM and SAX

had to be examined to determine which would best serve this

analysis and comparison process. The DOM was chosen because

it presented more capability to navigate and manipulate an

XML document. Additionally, the DOM's memory usage problem

would not impact this research effort since smaller views of

the JCDB and MIDB were being used.

2. Process Description Introduction

The objective of this step in the process is to employ

DOM APIs to examine and manipulate the XML documents built

from the database views. This can be accomplished with the

development of scripting code to invoke the DOM APIs. This

was accomplished using relatively few lines of code. The

majority of the code was necessary to account for the output

and storage functions that aren't yet available because the

associated DOM Recommendations have just been approved or

are nearing approval. Once all the DOM recommendations are

incorporated into a software application, it will be a

simple task to streamline the code to make it much more

efficient.

74

Microsoft's Internet Explorer with its built-in XML

parser and DOM APIs were chosen as the software application

to be used in this process. At this time there are no other

commercially equivalent XML parsers available for use on a

standard personal computer using Windows '95. Internet

Explorer 4.0 and Netscape 6.0 only have limited XML

capabilities. There are some shareware XML parsers

available on the web, but as with most shareware products

their functionality and reliability is questionable since

there is no commercial or technical rationale for the

developer to maintain the product.

JavaScript was used as the scripting code to enable the

Microsoft XML Parser (MSXML) and invoked the DOM APIs. The

JavaScript was used to develop the code necessary to import

the particular database XML documents into Internet Explorer

5.0, to parse that XML document into a DOM node tree, to

analyze that DOM node tree for a given search key, and to

output results of that search. The script code developed

for the analysis process used in this research was adapted

from code found in the book "XML IE5" [XMLIE99] . The code

was extensively modified to support this research effort's

need to execute an efficient search and manipulation of the

XML documents. The code used to output the located portions

of the XML document is relatively unchanged from the code in

the book. It provides the capability to import the products

of the analysis into this thesis.

75

3. Process Description Synopsis

To facilitate comprehension of the process, each step

in the process will be examined in detail by stepping

through the JavaScript code developed to execute the

analysis. The following is a quick overview of the process:

1. Parsing the XML Document: The XML document is parsed
into a DOM node tree.

2. Node Tree Search: Using DOM APIs the node tree is
searched for desired elements. A node list is
developed that contains all nodes that match the
desired search key.

3. XML Fragment Build: An XML fragment is built by deep
cloning the individually located nodes. This
cloning produces copies of the located node and all
of its children. The cloned node is attached to the
fragment. The fragment is complete when all located
nodes (and children) have been attached.

4. Fragment Decomposition: The analysis process
concludes when the built XML fragment is broken down
into the individual nodes, converted to text
outputs, and displayed.

4. Analysis Process Description

This process description will examine key portions of

the JavaScript and DOM APIs invoked to examine the XML

document. The specific functions of the DOM APIs will be

emphasized where it facilitates the search and manipulation

of the document. The HTML code used as part of this

analysis will be described when it impacts the involving of

the DOM APIs.

76

The complete code with extensive comments can be found

in Appendix E. Through the comment lines the code has been

divided into distinct sections. More critical sections like

the ones involving the DOM APIs will be described in detail.

Other sections that are only required to support the

execution of the code (e.g., the HTML code) will be briefly

described.

a) XML Document Import

This section contains the initial portion of the

HTML Head. As discussed earlier, HTML is used to support

the JavaScript execution of the XML parser and DOM APIs.

<XML ID=ndomSearchListn SRC=nYYYY.xml"></XML>

This line informs IE5.0 to invoke its built-in XML

parser. The IE5.0 used in this research project is an early

version of the XML parser. If a later version of IE is used

to execute this code, this line may have to be changed to

invoke the later version of XML parser (i.e., MSXML2,

MSXML3, etc.) Examples of how to invoke these later

versions of MSXML can be found in Professional XML Databases

[XMDBOO].

This same line also instructs IE5.0 what XML file

to import. Each time a different XML document needs to be

examined the "YYYY" will have to be changed to the name of

that XML document. The best way to modify this code is to

use the Notepad Application found on most personal computer

77

platforms. When the HTML code is modified, be sure to save

it as a text file with an HTML extension. The XML document

that is to be parsed must be located in the same folder as

the HTML file.

The last line of this section instructs IE5.0 that

JavaScript will follow.

b) XML Parsing

This section supports the parsing of the XML

document into the DOM node tree and to raise any parsing

error conditions if the parsing was unsuccessful.

objXMLData = document.all[MomSearchList'];

This line executes the parsing of the XML

document. The remainder of the code checks for and outputs

any parsing errors. The "parseError" API is an extension

built specifically by Microsoft to support Internet

Explorer. It is not part of the W3C DOM Recommendations.

It was included because it was simple to import as is from

the original code and proved beneficial when parsing the XML

documents. It identified several format/structure errors in

the XML documents. This was the only Microsoft IE specific

DOM APIs employed in this code. All other DOM APIs used are

included as part of the W3C DOM Level Recommendation 1.0.

78

c) HTML Search Function Call

The single line contained in this section calls

the "searchDocument" function in the following section. It

also returns the assembled strNodes variable that contains

the parsed XML fragment that will be described in a later

section.

The searchDocument function sends two sets of data

to the function. First is the DOM node tree to be examined.

The second is the search key to be matched as the DOM node

tree is searched. The search key should be the same as was

discovered in the Entity/Attribute Analysis and Comparison

Section. The search key will have to be changed every time

a different element needs to be located in the DOM node

tree. It's best to the Notepad Application to change the

search key. This search function is case sensitive so the

search key must be input exactly as was found in the

Entity/Attribute Analysis and Comparison. Also, the

quotation marks must be used with the search key. The

following example is taken from the code in Appendix E:

divResults.innerHTML = searchDocument(objXMLData, "TARGET-

ENGAGEMENT -ASSESS") ;

d) DOM Tree Search

This section, along with the following four

sections describes the searchDocument function. This

79

function is the primary function developed for this research

project. It executes the search for the common elements,

extraction of the common elements, and the calling of the

functions required to build the output of those extracted

elements.

This section establishes all the variables used in

this function. The key variable "objFrag" is created as an

XML fragment. It is considered a fragment since it is not a

well formed/valid XML document. It will contain only a root

element and added elements. This fragment is a holder of

the common elements located during the DOM node tree search.

listNodes = theRoot.getElementsByTagName(searchKey);

The line above calls the DOM API to search the DOM

node tree for all the elements that match the "searchKey".

It stores the located common elements in a node list. For

example, if the DOM node tree contained 4 separate

occurrences of the element <CAR>, the

getElementsByTagName("CAR") would return a node list

containing those four specific <CAR> nodes.

The use of the getElementsByTagName API will be

highly beneficial when searching extremely large DOM node

trees like those that would be built from JCDB and MIDB.

The getElementsByTagName is only called once during the

entire analysis process. Only having to search the DOM node

tree once makes this developed search process very

80

efficient. The resulting node list used from this point on

contains the specific information of the located elements

(e.g., location in the tree).

e) Notification of Found Elements

This section examines the listNodes variable

containing the built node list to see if it contains any-

matched nodes. The "listNodes.length" returns the number of

nodes in listNodes. If the listNodes.length is greater than

0, an alert window is opened displaying how many common

elements were found. If listNodes.length equals 0, then two

alert windows are opened providing additional guidance.

Even if the listNodes. length is equal to 0, the code

continues to execute until complete. Again this does not

impact execution time since all subsequent executions

triggers loops that use the listNodes.length as the upper

limit of the loop. So when listNodes.length is equal to 0,

the loops do not execute.

f) Extracting Found Nodes /Building XML Fragment

This executes a loop to extract the individual

nodes from the node list and adds them to the previously

created XML fragment. The nodes listed in listNodes are

numbered starting with zero. So listNodes(0) identifies the

first located node, listNodes(1) identifies the second and

so on.

81

Each time the loop executes for 1=0 through 1=

listNodes. length the following line is used to take the

found node and clone it:

objNode = foundNode.cloneNode(true);

As described earlier, the cloneNode(true) API

makes an exact duplicate of the node and of all the

descendant nodes. For the purposes of this research effort,

it is critical to extract these descendants since they will

be an important part of the database to database comparison.

obj Frag.appendChild(objNode);

The line above attaches the cloned node (and its

descendants) to the XML fragment.

The loop continues to execute until all the nodes

contained in listNodes have been cloned and added to the XML

fragment. An alert window is opened to display the entire

XML fragment. The person conducting the analysis can

quickly scan the alert window to determine if the desired

information was found in the fragment. If the alert window

is large the "OK" button may be off the screen. If this

happens simply hit "ENTER" key to close the window.

g) Building the Output

This section executes the same loop as before to

again extract the nodes in listNodes. Each execution of the

loop calls the "showChildNodes" Function sending the node

from listNodes. This function was modified from code found

82

in the XML IE5 book [XMLIE99] . The showChildNodes Function

returns a text output containing the parsed details of the

node sent during the function call. This text output is

appended to the strNodes variable.

The searchDocument Function is completed when the

listNodes loop has finished. The strNodes variable

containing the assembled text output of the all the located

nodes is returned for display.

h) Parsing Node for Output

This section contains the definition of variables

and the assembly of the information on the nodes sent to the

showChildNodes Function. The strNodes variable is

continuously appended with information on the node. The

following information is appended to strNodes:

API or

Function Call

Action

getIndent(intLevel) A function call to improve readability

of output. Will be describe in more

detail in getIndent Function Section.

obj Node.nodeName Returns name of objNode.

getNodeType(objNode.

nodeType)

objNode.nodeType returns a number

between 1 and 12. These values are

predefined values that are associated

with the individual node types that

83

objNode.nodeValue

can be found in a DOM Node Tree (see

figure 4) . The getNodeType function

is called sending node type integer.

See the getNodeType Function

description.

Returns a text equivalent of the value

contained in the node. If no value if

found, null will be returned.

i) Output Attribute Node Information

This section returns any attribute information

related to this node. Nothing will be added to strNodes if

there are no attributes associated with this node.

Invoking the objNode.attributes API develops an

attribute list containing all the attributes associated with

the objNode. This list, called the NamedNodeMap, functions

just as the node list.

The objAttrList (the attribute list) is first

checked to see if it contains any attributes. If

objAttrList is not equal to "null" the function continues to

parse the attributes. A loop is then called to parse all of

the attributes contained in the attribute list. The same

DOM APIs used to examine the nodes in the node list are used

to examine the attributes in the attribute list. Each loop

execution appends the attribute information to the strNodes

84

variable. Review of the JavaScript code in Appendix E is

reccommended to see the similarities.

j) showChildNod.es Function Called Again

When the nodes were originally cloned, their

descendant nodes were also cloned. This section examines

the node to determine if it contains any children nodes. If

so, the showChildNodes function is called again to get

information on that child node. If that child node contains

its own children nodes the showChildNodes function will be

called again to get their information. This is what is

called a "recursive" function call. This basically means

that a function calls itself. In the case of this analysis,

the recursive function calls will continue until all the

descendant nodes of the original node have been located and

their parsed node information has been appended to the

strNodes variable.

k) getNodeType Function

The getNodeType Function returns a text output

describing the type node being examined. The specific

output is based on the integer identified by the

objNode.nodeType and objAttrList(intAttr).nodeType DOM API

calls.

85

1) getlndent Function

This section contains the getlndent Function that

is used to insert indents into the strNodes variable to

improve readability of the output. Each time the showChild

Function is called, the indentation is increased. This

makes it easier to distinguish the parent nodes from the

children nodes.

This section also completes the JavaScript used to

execute the analysis of the XML document. The remainder of

the sections describe the remaining HTML code required to

execute the analysis.

m) parseXML Function Call

This section calls the parseXML Function described

previously. It also calls the searchDocument Function and

displays the completed strNodes variable.

n) XML Document Button

This HTML code displays a button that when

selected displays a separate page containing the XML

document that was analyzed. This code was left in because

it helped during code debugging. It is strongly recommended

that this button function be disabled as described in the

comment line of the code when analyzing extremely large XML

documents, like those built from JCDB and MIDB.

86

5. Summary of Analysis Process

The code just described provides a standardized search

and manipulation process that can be used on any XML

document. This code provides several benefits:

One benefit of using a standardized analysis process is

that the outputs are standardized. This simplifies the

process of comparing the located nodes from heterogeneous

databases.

This analysis process only searches the DOM node tree

once. The node list built during the initial search is used

from that point on to extract the located nodes. This

provides a timesavings when searching extremely large DOM

node trees built from databases like JCDB and MIDB are

analyzed.

This process extracts small, comparable outputs from

large databases. This eases the efforts to compare the

potentially common elements.

F. JCDB AND MIDB VIEW ANALYSIS

1. Analysis Component Review

The following describes all the components developed to

support this analysis:

Entity Relationship Diagrams: These diagrams were

developed for the selected views of the JCDB and MIDB.

These particular views were chosen for their inherent

commonality that would help facilitate the description of

87

this process. These views focused on the Target Engagement

and Target Engagement Assessments domains.

The particular view of the JCDB Entity Relationship

Diagram was extracted from the provided JCDB Entity

Relationship Diagram. The MIDB Entity Relationship Diagram

was unavailable for this research effort. As a result the

entity relationship diagram of the selected MIDB View was

built manually from the relationships identified in the MIDB

Data Dictionary.

XML Documents: The XML documents for the JCDB and MIDB

Views had to be built manually because the databases were

not available for this research effort. As described in

Section IV.C, different automated method are available and

should be used whenever possible when trying to convert

extremely large database. This is another reason specific

views of the databases were chosen for the research effort.

These smaller views supported the manual development of the

example.

The XML documents were developed in a manner that

supported description of the analysis process. Also these

XML documents were developed without DTDs or Schemas. The

developed analysis process does not require the DTDs or

Schemas. For those who are concerned about the lack of DTDs

or Schemas, this analysis process does not preclude the use

of the DTDs or Schemas.

88

Search Keys: As described earlier, the search keys

would be provided as products of the Entity/Attribute

Analysis and Comparison process described in Mr. Hamza

Zobair's Thesis: "An Approach for Matching Corresponding

Attributes in Legacy Heterogeneous DoD Databases". Due to

the concurrency of Hamza Zobair's research and mine, his

described analysis process was not used as part of this

research effort. Instead search keys were manually selected

based on their inherent similarities. The search key

selected for the JCDB View was "TARGET ASSESSMENT". The

search key selected for the MIDB View was "TGT_DTL_ASSESS".

2. JCDB Analysis

The first step in the JCDB analysis is to insert the

name of the XML document to be analyzed and the given search

key. Using Internet Explorer, open the HTML file containing

the analysis code. To execute the analyses simply click the

"GO" button at the right side of the address bar.

The first alert window to open displays how many

"TARGET ASSESSMENT" nodes were located in the JCDB DOM node

■ Microsoft Internet Explorer Hf)

/?\ Found2TARGET-EN6AGEMENT-ASSESS:

Figure 6: Found Node Alert Window

89

tree. Figure 6 shows how many TARGET ASSESSMENT were nodes

located in the JCDB Node Tree.

Click the "OK" button or hit the "Enter" key and the

second alert window opens displaying the located nodes and

all their descendant nodes. The Figure 7 shows that some of

Microsoft Internet Explorer

iV <TARGET-ENGAGEMENT-ASSESS ENGMENT ASSESJNDX=T'>
<ENGAGE END DTTM>010B251000Ö0</EiJGAGE END DTTM>
<TRGT_DISPO_CD C0DE="1">

<LABEL>6<AABEL>
</TRGT DISPO CD>
<ENGAGE DMG_PERCNT>90</ENGAGE_DMG_PERCNT>
<NUM_0F CASUALITIES>15</NUM OF CASUALITIES>
<RECORD STATUS CDDE="Ä">

<RECORD_STATUS_DTTM>010625074500</RECORD STATUS DTTM>
<LABEL>12<AABEL>

</RECORD_STATUS>
PERCEPTION PERCEP_REF INDX="8659

<PERCEP INPUT ID>48394</PERCEP_INPUT ID>
<RPRTING_ORG RPRTING_0RG_ID="34732,,>"

<RPRTING 0RG_INPUT>29483</RPRTING ORG INPUT>
</RPRTING_ORG> "
<PERCEP_REPRT_DTTM>01C625101500</PERCEP_REPRT_DTTM>
<PERCEP_STRT DTTM>010625100000</PERCEP STRT DTTM>
<PERCEP END_DTTM>010625100500</'PERCEP END DTTM>
<RECORD"lSTATUS C0DE='Ä"> ~ "

<RECORD_STATUS_DTTM>010S25101500</RECORD STATUS DnM>
<LABEL>10<AABEL>

</REC0RD STATUS>
</PERCEPTION>

</TARGET-ENGAGEMENT-ASSESS>
<TARGET-ENGAGEMENT-ASSESSENGMENTjuSSES INDX="2">

<ENGAGE END DTTM>010S25121500</ENGAGE END DTTM>
<TRGT_DISPO CDC0DE='1"> ~ €3

<LABEL>6</LABEL>
</TRGT DISPO CD>
<ENGAGE DMG_PERCNT>80<>'ENGAGE_DMG_PERCNT>
<NUM_0F CASUALITIES>10</NUM 0F_D1SUAUTIES> §J|
<RECORD~STATUS C0DE="A'>

<RECORD_STATUS DTTM>010625123000</RECORD STATUS DTTM> fM
<LABEL>12</LABEL> lj|

</REC0RD STATUS> - ■■■'•'■'"■
PERCEPTION PERCEP_REF_INDX="8659,,>

<PERCEP INPUT_ID>48394</PERCEP INPUT_ID>
<RPRTING_ORG RPRTING ORG ID="34732"> 111

<RPRTING_ORG_7NPUf>29483</RPRTING ORG INPUT> ■
</RPRTING 0RG>

igXML ... jp Jcdbxml-Note... | \f%untiUed ■ Paint] ^Microsoft Powe...| jg)CanonBJ Prfrfci'j | jj ^JjJjjgv^

Figure 7: Snapshot of Located Nodes

90

located information can be quickly reviewed to determine if

its the type of information desired.

Note that some of the information is located off the

screen. This is not important since a more thorough output

will follow. Since the "OK" button is located off the

bottom of the screen the "Enter" key will have to be hit to

close the window.

The nodes displayed in the previous alert window are

then parsed into the final standardized output and displayed

in the Internet Explorer window. This output can be printed

or copied into other software products for the following

comparison. Due to its size, the output from the JCDB

analysis is included in Appendix F. This completes the

process of searching the JCDB for specified nodes.

3. MIDB Analysis

The exact same analysis process is used to analyze the

MIDB View. The only variation required is to change the

name of the XML document to be analyzed and changing the

HI M icrosof 11 nternet E xplorer fjjji 1

/|V Found2TGT_DTL_ASSESS

; __EjK ~|

Figure 8: Found Node Alert Wii idow

91

search key to "TGT_DTL_ASSESS". The corresponding alert

windows are shown in the following two figures and the final

output is included in Appendix G.

Microsoft Internet Explorer

JV <TGT_DTL_ASSESS TGT_DTL ASSESS_SK="24373">
<ASSESS TYPE>BDA</ASSESS TYPE>
<CLASS_LVL>Lk/CLASS LVL> ~
<CODEWORD>0</CODEWORD>
<CONDITION>DST</CONDITION>
<C0NDITI0N AVAIL>DMG</pCONDITI0N_AVAIL> ' .
<C0NTR0L MARK>NFoCONTROL_MARK>
<DATETIME_CREATED>19650302183212</DATETIME CREATED>
<DATETIME_LAST CHG>19E5J3021£2354<I.,[IHTET|ME LAST CHG
<DOMAIN_LVL>CO</D0MAIN LVL>
<EVAL>8<>'EVAL>
<FPA>EOB</FPA>
<LAST_CHG USEFID>VGFGHJFT</'LAST CHG USERID>
<MIDB_TIMESTAM=>7654</MIDB TIMESTAMP">
<0PER_STATU9>RD3</0PER SfATUS>
<PROD_LVL_CAP>S</lPROD LVL_CAP>
<PROD_LVL_REQ>S</PROD~LVL REQ>
<RECORD_STATUS>A</RECORD~STATUS>
<RECUP_INTRVL>1000< 'RECUP TNTRVL>
<RECUP_INTRVL MAX>1500</RECUP_INTRVL MAX>
<RECUP_INTRVL UM>14DAY</RECUP_INTRVL UM>
<RELEASE_MARK>B2</RELEASE MARK>
<RES_PROD>Z</RES PROD>

<REVIEW_DATE>1955~ö32D120000</REV1EW DATE>
</TGT DTL ASSESS>

<TGT_OTL_äSSESSTGT_DTL_ASSESS_SK="37584,,>
<ASSESS_TYPE>BDA</ASSESS TYPE>
<CLASS_LVL>U</C_ASS LVL> ~

<CODEWORD>O</CODEWORD>
<C0NDITI0N>DST</CONDITI0N>
CONDITION AVAIL>DMG</CONDITION_AVftlL>
<C0NTR0L MARK>NF</CONTROL MARIO
<DATETIME_CREATED>19650320120GOO</DATETIME CREATED>
<DATETIME_LAST_CHG>19650320193110</DATETIME' [AST: CHG> •
<DOMAIN_LVL>CO</DOMAIN LVL>
<EVq.L>8</EVAL>
<FPA>EOB</FPA> SM
<LAST_CHG_USERID>JUERHWC<AAST CHG USERID>:'.-::.
<MIDB TIMESTAMP>85GB</MIDB TIMESLaMP>
<OPER STATUS>RD3</0PER_SfATUS>
<PROD_LVL_CA.P>S</'PROD_LVL_CAP>

} jj Microsoft PowerPoint-IFI . lliTjListing XML Pocumen

Figure 9: Snapshot of Located Nodes

92

G. FINAL STEP - COMPARISON OF ANALYSIS RESULTS

The objective of the previous analyses was to build a

series of comparable outputs that a SME could compare to

determine if the located information is common/similar. As

can be seen in the outputs contained in Appendix F and

Appendix G, even though the search keys used were similar,

the located data looks quite different in terms of content

and hierarchical relationships. This should not be

unexpected when comparing heterogeneous databases. Taking

into account that each database was originally developed to

support a specific system-use these outputs should probably

look different.

The differences in the analysis output is the very

reason the analysis process was developed. It provides an

alternative to the very complicated task comparing the very

large databases. This analysis process has winnowed down

these very large databases into two comparable XML based

outputs that SMEs should be able to ascertain whether they

are common.

The comparison process consists of providing the SME(s)

with the results of the analysis. The SME(s) can review

individual components (i.e., elements, attributes, etc.) of

each output along with the associated hierarchical

relationships of those components. The SME can then compare

93

the two outputs to determine if they represent the same

information.

Exactly how the outputs are compared should be left up

to the individual SMEs. Different SMEs would probably

emphasize different portions of the outputs during their

comparisons.

1. Comparison Example

Here is an example of how an SME might compare the two

extracted and decomposed outputs. Figure 10 contains a

portion of the JCDB output that shows a simple overlay

rARGET-ENGAGEMENT-ASSESS Type: ELEMENT (1) Value: null
ENGMENT ASSES INDX Type: ATTRIBUTE (2) Value: 1
ENGAGE_END_DTTM Type: ELEMENT (1) Value: null

jjtext Type: TEXT (3) Value: 010625100000

RECORD_STATUS Type: ELEMENT (1) Value: null

TfrGT_DISPO_CD Type: ELEMENT (1) Value: null
CODE Type: ATTRIBUTE (2) Value: 1
LABEL Type: ELEMENT (1) Value: null

| #text Type: TEXT (3) Value: 6
EKGAGE_DMG_PERCNT Type: ELEMENT (1) Value: null

foext Type: TEXT (3) Value: 90
NUM_OF_CASUALITIES Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 15

CODE Type: ATTRIBUTE (2) Value: A
RECORD_STATUS_DTTM Type: ELEMENT (1) Value: null
#text Type: TEXT (3) Value: 010625074500

LABEL Type: ELEMENT (1) Value: null
#text Type: TEXT (3) Value: 12

TI ll Descendants^^*

Figure 10: Portion of JCDB Output

A

u o

V

94

method to show the hierarchical relationships and the

different nodes that make up the output.

The SME could easily do this with all extracted outputs

or the HTML code could be revised to show these

relationships overlays. The goal would be to examine the

individual nodes with regards to where they fit in the

hierarchy and the type of information they contain.

Similarities between the outputs would have to be

examined as well as the nodes that do not look similar. The

goal would be to equate the two outputs to determine if the

similar aspects of the two outputs outweigh the non-similar

JCDB Output Portion
TARGET-ENGAGEMENT-ASSESS Type: ELEMENT m Value: null
lENGMENT ASSES INDX Type: ATTRIBUTE (2) Value: lM
ENGAGE_END_DTTM Type: ELEMENT (1) Value: null
«tot Type: TEXT (3) Value: 010625100000

TRGT DISPO CD Type: ELEMENT (1) Value: null
CODE Type: ATTRDJUTE (2) Value: 1
LABEL Type: ELEMENT (1) Value: null
«W Tyre- TFVT fn v.l.,,- a

MIDB Output Portion
Similar'' TOT DTI, ASSESS Type: ELEMENT») Value: null
 = HrCT_DTL_ASSESS SK Type: ATTRD1UTE (2) Value: 24373 [

ASSESS TYPE Type: ELEMENT (1) Value: null
#text Type: TEXT (3) Value BDA

CLASS LVL Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: U

ENGAGE DMG PERCNTType: ELEMENT (1) Value: nu!
«text Tyre: TEXT «W.lne: 00

NUM_OF_CASUALrnES Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: 15

RECORD_STATUS Type: ELEMENT (1) Value: null
CODE Type: ATTRIBUTE (21 Value: A fc^

RECORD_STATUS_DTTM Type: ELEMENT (1) Value: nu
«text Type: TEXT (3) Value: 010625074500

LABEL Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: 12

PERCEPTION Type: ELEMENT (1) Value: nuD
PERCEP REF INDX Type: ATTRIBUTE (2) Value: 8659
PERCEPJNPÜTJD Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: 48394

RPRTING ORG Type: ELEMENT (I) Value: null
RPR1TNG ORGJOD Type: ATTRIBUTE (2) Value: 34732
RPRTING_ORG_INPUT Type: ELEMENT (1) Value: null
«text Type: TEXT (3\ Value: 29483

PERCEP_REPRT_DTTM Type: ELEMENT (1) Value: null
«text Type: TEXT"(3) Value: 010625101500

DATETIME_CREATED Type: ELEMENT (1) Value: nun
«text Type: TEXT ffl Value: 19650302183212

DATETIME_LASTCHG Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: 19650302192354

DOMAIN LVL Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: CO

EVAL Type: ELEMENT (1) Value: nidi
«text Type: TEXT (3) Value: 8

RECORD_STATUS Type: ELEMENT (1) Value: i
«text Type: TEXT (3) Value: A

RECUPJNTRVL Type: ELEMENT (1) Value: null
«text Type: TEXT Gh Value: 1000

RECUP_INTRVL_MAX Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: 1500

RECUP_INTRVL_UM Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: 14DAY

RELEASEJVIARK Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: BZ

RES_PROD Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: Z

REVIEW_DATE Type: ELEMENT (1) Value: null
«text Type: TEXT (3) Value: 19650320120000

Figure 11: Hierarchy and Node Content Comparison

95

aspects. As Figure 11 shows, the SME is still faced with a

challenge to determine if the outputs are common.

Recalling that these two outputs were built from the

previously identified common "search keys" it is interesting

that when the database components and hierarchical

relationships are extracted, the commonality comparison

becomes a much more complex task. In fact, these extracted

outputs may show that they represent very different types of

information even though they were originally raised as

candidates for commonality. In fact, it is the

relationships between the individual elements that present

the SME with the additional information necessary to execute

the comparisons.

The advantage of this developed analysis and comparison

method is the availability of useable information. All the

necessary detail of the hierarchical node relationships and

individual node content is extracted and decomposed into a

series of the outputs that can be examined by the SME. It

simplifies the SME's comparison tasks considerably. It also

improves the thoroughness of the comparisons. Recalling

that the original materials available were the databases,

the data dictionaries, and the entity relationship diagrams.

The database, being stored in some unique DBMS*format, would

be unreadable without the database software. The data

dictionary and entity relationship diagrams are large,

complex, and usually difficult to read.

96

Using this analysis and comparison method, the SME is

now presented with easily readable outputs containing the

desired information for comparison. If a specific term is

not inherently understandable the specific portion of the

data dictionary and/or entity diagrams can be consulted for

detail.

2. Comparison Summary

This completes the analysis and comparison process

developed in this research effort. The goal of locating and

providing potential common data from heterogeneous databases

has been achieved. The data provided is in the context of

both detailed information of the individual components and

the hierarchical relationships of those components. Only by

examining both the components and hierarchical relationships

contained in the databases can the database analysis and

comparison truly useful.

Hopefully, using this analysis and comparison method,

the SMEs now can better focus and simplify their comparison

efforts.

H. CHAPTER CONCLUSION

The database analysis and comparison process described

in this chapter is represented in Figure 12. The specific

sections describing each individual step is indicated by the

section number included in each step. The following

provides a brief summary of each step:

97

Database Review
(IV.B)

JCDB MIDB

JCDB/
XML Doc

XML Conversion
(IV.C)

MIDB/
XML Doc

Search Key
Determination

XML Parse into DOM Tree

JCDB
Search Keys

CD

Si

(IV.E.4.a-c) □ Search Key
Determination
 gy-p)

Search/Extract based on Search Key
(IV.E.4.d-n)

€3
km

MIDB
Search Keys

SME Comparison
(IV.G& Figures 10 & 11)
JCDB
Output

MIDB
Output

Figure 12: Analysis and Comparison Process

1. Database Review Summary

This step focuses on the manual examination of each

database to be analyzed and compared. The subsequent

database comparisons will be of more value if each database

contains the same type of information.

2. Database Conversion to XML Summary

This step focuses on the conversion of the databases

into XML documents. The recommended approach is to utilize

the COTS based database to XML translators contained in most

commercial DBMS. This provides an automated method to

execute this task. Using automated means to complete this

98

task is important since the large databases, like JCDB and

MIDB, will translate into extremely large XML documents.

An alternative method that can be used is to utilize

the ODBC APIs built into most DBMSs to manipulate the

databases into an ODBC structure. This structure can then

be converted to XML by using the 0DBC2XML translator

shareware.

3. Entity/Attribute Analysis and Comparison Summary

This step in the process focuses on locating specific

common entities and attributes between multiple databases.

This provides the search keys for the subsequent

hierarchical analyses of the XML documents. This process is

the subject of Mr. Hamza Zobair's Thesis entitled: "An

Approach for Matching Corresponding Attributes in Legacy

Heterogeneous DoD Databases" [HZ01].

4. Hierarchical Examination Summary

This step is comprised of steps that parse the XML

documents into DOM node trees, searches those trees using

specified search keys, and extracts desired nodes and

descendant nodes. This automated process, developed for

this research effort, utilizes IE and its built-in XML

parser to parse the XML document. Then DOM APIs are invoked

using JavaScript to execute the DOM node tree search and

extract the located nodes and descendant nodes. The

99

following table contains each of the DOM APIs and functions

used to execute this search and extraction:

DOM API or Function:

getElementsByTagMame(

searchKey)

length

cloneNode(deep)

Action:

Builds a node list containing each

tag that matches the search key.

Returns an integer representing the

number of nodes contained in list.

appendChild(objNode)

Returns a duplicate of node. Deep is

a boolean value. If false, returns

node. If true, the node and entire

subtree under the node is returned.

showChildNodes

getIndent(intLevel)

nodeName

getNodeType(objNode.n

odeType)

Appends node to existing node

A function call to examine the child

nodes of the current node.

A function call to

readability of output.

improve

Returns name of objNode.

nodeValue

attributes

objNode.nodeType returns a number

between 1 and 12.

Returns I text equivalent öf the

value contained in the node. If no

value if found, null will be

returned.

Generates a list of attributes

contained in node.

100

parseError An IE unique API that identifies any

errors during XML parsing.

5. Comparison of Analysis Results Summary

This step presents the extracted data to be compared to

the SME. As can be seen in Section IV.G and Figures 10 and

11, the extracted portions can look quite different. Only a

SME would be able to determine if the extracted portions are

similar. When taking into account the hierarchical

relationships contained in these databases, this comparison

can be quite complex. During this research effort no

automated methods to accomplish this task could be found

that might aid the SME in this task.

The benefit this research provides is that it

simplifies the SME's comparison task by providing only the

desired information to be compared in an easily readable

format. The SME's alternative would be to conduct

exhaustive reviews of the databases, data dictionaries, and

entity-relationship diagrams.

6. Research Limitations

The analysis and comparison process described contained

in this thesis does have some limitations:

a) Level of Detail

The effort to develop databases to the same "level

of detail" could be a complicated task if the databases to

101

be compared are significantly large and different.

Databases like the ones discussed in this thesis are very-

large and complex. That is why smaller views of the JCDB

and MIDB where used in this thesis to describe the analysis

and comparison process.

b) Size Growth

Another limitation is the growth associated with

the conversion of the databases to XML documents and then to

DOM node trees. The size of the original databases are very

large to start with. The subsequent conversions can

possibly lead to a 100 to 1 growth in size. With XML being

the focus of this result, this problem cannot be avoided.

Fortunately, the rapidly advancing state-of-the-art in

computer technology makes this less of a problem as time

goes on.

c) Manual Comparison of Outputs

The SMEs are required to execute manual

comparisons of the extracted portions of the databases. As

shown in Figures 10 and 11 this can present the SMEs with a

difficult task when considering the hierarchical node

relationships and the individual node contents. The

advantage provided by this process is that all the data to

be compared is presented in a succinct and easy to read

102

format. The SME will still have to make some hard decisions

on what is similar and what is not.

An alternative to the process described in this

research effort is for the SMEs to rely solely on the

databases, data dictionaries, and entity relationship

diagrams. In that case, the comparisons would probably take

days, or even weeks just to locate a single entity that is

comparable in terms of hierarchy and in content.

7. Example Crosswalk

To simplify the process description provided in this

chapter the following table is provided to identify the

specific sections containing the individual step

descriptions and associates them to the sections describing

the actual step execution on the JCDB and MIDB views.

Process Step JCDB Execution MIDB Execution

Level of Detail

IV. B

IV.B.2 IV.B.3

XML Conversion

IV. C

IV.C.3 IV.C.3

Search Key Determ.

IV.D

IV.D IV.D

XML Parse to DOM

IV.E.4.a-c

IV.F.2 IV.F.3

Search/Extraction

IV.E.4.d-n

IV.F.2 IV.F.3

103

8. Commercial Application of Process

The XML parse, search, and extraction portions of the

described analysis and comparison process could be a useful

commercial application. The code was written in a manner

that would allow it to parse and analyze any XML document.

It uses specified search keys to locate, extract, and output

the desired nodes and descendant nodes. This code could

easily be revised to take those extracted nodes and import

them into new/different XML documents. This is described in

greater detail in the Future Work Research Possibilities

Section.

9. Putting This Research Into Practice

As described earlier in this thesis, this research is

part of a larger XML-C4I Database analysis research effort.

The products from this research will be incorporated with

the other research efforts into an analysis process that

examines multiple opportunities to use XML to facilitate

manipulation of C4I databases as a means to support improved

C4I interoperability.

104

THIS PAGE INTENTIONALLY LEFT BLANK

105

V. CONCLUSION AND FINAL RESEARCH POSSIBILITIES

A. CONCLUSION

This thesis examines in detail how XML can be employed

to facilitate the analysis and comparison of heterogeneous

databases. It provides a decomposition of located similar

components that can be compared to determine what components

are common and what components are not.

The first sections of this thesis provides significant

detail on XML and the current DoD C4I environment. This

background information provides the foundation upon which

this XML based analysis and comparison process was designed,

developed, executed, and described.

The original research objective being examined in this

thesis was to determine if an XML schema could be defined to

support the scalability of components from multiple legacy

databases to modern C4I systems. This thesis successfully

proves that XML based Schemas can be developed that can

facilitate this legacy to modern C4I migration. XML

provided the common basis upon which the analysis could be

executed and the common elements extracted.

This thesis describes a new XML based C4I database

analysis and comparison method. It support the first step

towards data exchange between C4I databases by supporting

the determination of what parts of the individual C4I

106

databases are similar. As a result, it provides the means

to facilitate the interoperability between these different

C4I systems identifying data that may be exchanged by

individual databases.

COTS products were employed in the development of the

analysis and comparison process. By utilizing COTS an

additional benefit resulting from this method was its

broader application beyond C4I databases. This new method

can be used to analyze and compare any XML document.

Overall, this research effort was successful in

achieving its original investigation objectives.

B. FUTURE WORK RESEARCH POSSIBILITIES

Opportunities for future work in this field are

extensive. The following are just a few recommendations:

Continue to refine the analysis and comparison

process developed in this research effort. As the DOM

Recommendations continue to be approved, a number of new DOM

APIs will become available that could be employed to improve

and expand this XML based analysis and comparison process.

- Define in more detail the Subject Matter Expert (SME)

comparison portion of the process. This could include an

examination of how to best format the outputs from the XML

based analysis to support the SME review and comparison.

- Investigate how the extracted common products from

this XML based analysis and comparison could be restructured

107

into a global C4I database. In effect this process would

reverse the process describe in this thesis. The

restructuring could involve combining the extracted XML

fragments into a well-formed XML document based on SME.

This new XML document could be used as the basis to build

future common C4I databases.

It needs to be stressed that the XML based analysis and

comparison process described in this thesis describes only

one way to execute an XML based database analysis. XML and

XML related capabilities and tools provide the opportunity

to develop alternative analysis and comparison methods.

These methods could include XML related capabilities and

tools like XSL, XQuery, SAX, and others. Each of these

alternative methods has its own advantages and

disadvantages. The use of SAX as an alternative was

described in thesis.

In summary, XML provides the means to analyze and

compare heterogeneous databases. This was proven through

the analysis and comparison of the JCDB and MIDB Views. As

XML continues to grow, so will the alternatives available to

analyze heterogeneous C4I databases.

108

APPENDIX A - JCDB DATABASE VIEW

Example of extracted portions from data dictionary and

entity relationship diagram [JDDOO]:

TARGET ENGAGEMENT ASSESSMENT The table that hold specifics about the
results of a TARGET-ENGAGEMENT.
(Battle Damage Assessment)

ATTRIBUTE NAME PHYSICAL DEFINITION DATA NULL ATTRIBU
NAME TYPE OPTI

ON
TE

ENTITY1

TARGET- ENGMENT The unique seria NOT TARGET
ENGAGEMENT-END ASSES IN identifier 1 NULL ENGAGEM
index DX that

represents a
specific
TARGET -
ENGAGEMENT-
END

ENT ASS
ESSMENT

TARGET- TARGET E The unique integ NOT TARGET
ENGAGEMENT NGAGE IN identifier er NULL ENGAGEM
identifier DX that

represents a
specific
TARGET
ENGAGEMENT

ENT ASS
ESSMENT

TARGET_eng_input c_INPUT The MAC
address of
the machine
creating the
record. The
unique
identifier
that
represents a
specific
TARGET

integ
er

NOT
NULL

TARGET
ENGAGEM
ENT_ASS
ESSMENT

109

ENGAGEMENT

TARGET-
ENGAGEMENT-END
actual end
datetime

ENGAGE E
ND_DTTM

The end
datetime of a
TARGET
engagement.

datet
ime
year
to
secon
d

NOT
NULL

TARGET
ENGAGEM
ENT ASS
ESSMENT

TRGT DISPO CD

CODE
LABEL

The code which denotes the state of a TARGET after
it has been ENGAGED.

TRGT DISPO CD TRGT_DIS
PO CD

The code
which denotes
the state of
a TARGET
after it has
been ENGAGED.

small
int

NOT
NULL

TARGET_
ENGAGEM
ENT_ASS
ESSMENT

TARGET-
ENGAGEMENT-END
resulting damage
quantity

ENGAGE D
MG PERCN
T

The
percentage of
destruction,
or other
desired
result,
inflicted
upon a TARGET
by a specific
TARGET-

decim
al(5,
2)

NULL TARGET
ENGAGEM
ENT_ASS
ESSMENT

'
ENGAGEMENT.
(0-100%)

TARGET-
ENGAGEMENT-
ASSESSMENT
number of
casuality
quantity

NUM_OF_C
ASUALITI
ES

The number of
casualities
provided for
a TARGET-
ENGAGEMENT-
ASSESSMENT.

int eg
er

NULL TARGET_
ENGAGEM
ENT_ASS
ESSMENT

110

PERCEPTION

TARGET ENGAGEMENT

TARGET-ENGAGEMENT identifier (M)
TARGET eng input (M)
PLAN NUMBER (M)
MSN NUM(M)
COA_NUMBER(M)
CREATING UNIT NUM(M)
PHASE_NUMBER7M)
PLAN UNIT NUM(M)
TGT üST TYP CD

ENGJ>RECEDENCE_CD
EFFECTS CD
ENG_VAL
TGTENG_TRAJ_CD
TRGT_STRENGTH_NUM
TIME ACQUIRED DTTM
TIME ON TRGT.DTTM
HEIGHT_ÖF_BURST
DANGER-CLOSE-INDICATOR code
METHOD-CONTROL code
ENGAGEMENT COMMENT
REASON-DENIAL code
DURATION_OF_SMOKE
EFFECTS_PERCENT
CANDIDATE -TARGET index identifier
CANDIDATE-TARGET input identifier
RECORD STATUS (FK) (M)
RECORD~STATUS DTTM(FK)(M)
PERCEPTION identifier(FK) (M)
PERCEPTION input identifier(FK) (M)

PERCEPTION identifier (M)
PERCEPTION innnl irfrntifirr (M
REPORTING-ORGAN1ZATION identifier (M)
REPORTING-ORGANIZATION input identifier (M)
PERCEPTION reporting calendar datetime (M)
PECEPTION start datetime
PERCEPTION end datetime
PERCEPTION evaluation code
PERCEPTION qualifier code
PERCEPTION amplifying remark text
RECORD_STATUS (FK) (M)
RECORD~STATUS_DTTM(FK) (M)

Joint Common Database
Target Engagement

Target Engagement Assessment
Logical Data View

RECORD_STATUS

CODE(M)
RECORD STATUS DTTM(M)

TARGET ENGAGEMENT ASSESSMENT
TARGET-ENGAGEMENT-END index (M)
TARGET-ENGAGEMENT identifier (FK) (M)
TARGET eng input (FK) (Ml

TRGT DISPO CD

TARGET-ENGAGEMNET-END actual end datetime (M)
TRGT_DISPO_CD (FK) (M)
TARGET-ENGAGEMENT-END resulting damage quantity
TARGET-ENGAGEMENT-ASSESSMENT number of causality quantity
RECORD_STATUS (FK) (M)
RECORD_STATUS_DTTM (FK) (M)
PERCEPTION identifier(FK) (M)
PERCEPTION input idcntifier(FK) (M)

CODE (Ml

111

THIS PAGE INTENTIONALLY LEFT BLANK

112

APPENDIX B - MIDB DATABASE VIEW

Example of extracted portions from data dictionary and

entity relationship diagram [MID98]:

1. Table Name:
2. Table Long Name:
3. Description:

desired mean point of impact (DMPI),
4. Elements:

AFFILIATION
AIR_DEF_AREA
AZIMUTH
AZIMUTH_REF
CC (M)
CLASSJ.VL (M)
CODEWORD
CONDITION (M)
CONDITION.AVAIL
CONTROL_MARK
COORD (M)
COORD_BASIS (M)
COORD_DATETIME
COORD_DATUM (M)
COORD_DERIV (M)
COORD_DERlV_ACC
COORD_DERIV_ACC_UM
COORD_ROA
COORD_ROA_CONF_LVL
COORD_ROA_UM
DATETIME_BEGIN
DATETIME_CREATED (M)
DATETIME_END
DATETIME_FIRST_INFO
DATETIME_LAST_CHG (M)
DATETIME_LAST_INFO
DECLASSJDN
DECLASS_ON_DATE
DMPIJD
DOMAIN_LVL (M)
ELEVATION
ELEVATION_ACC
ELEVATION_CONF_LVL
ELEVATION_DATUM
ELEVATION_DERIV
ELEVATION_DERIV_ACC
ELEVATION_DERIV_ACC_UM
ELEVATION_MSL
ELEVATION_MSL_ACC
ELEVATION_MSL_CONF_LVL
ELEVATION_MSL_DERIV
ELEVATION_MSL_DERIV_ACC
ELEVATION_MSL_DERIV_ACC_UM
ELEVATION_MSL_UM
ELEVATION_UM
EVAL (M)
FPA
GEODETIC_PROD

5. Primary Key(s):
6. Foreign Key(s):

TGT_DTL
Target
This table refers to a specific target. The target may be a

or an area of impact.

GEOIDAL_MSL_SEPARATION
GEOIDAL_MSL_SEPARATION_UM
GRAPHIC_AGENCY
GRAPHIC_CC
GRAPHIC_ED_DATE
GRAPHIC_ED_NUM
GRAPHIC_SCALE
GRAPHIC_SERIES
GRAPHIC_SHEET
HARDNESS
HEIGHT
HEIGHTJJM
ILAT
ILON
JMEM_TYPE
LAST_CHG_USERID (M)
LENGTH
LENGTH_UM
LOC_NAME
MIDB_TIMESTAMP (M)
MIL_AREA
MIL_GRID
MIL_GRID_SYS
MSN_TYPE
OPER_STATUS (M)
PHOTO_DATE
POL_SUBDIV
PROD_LVL_CAP (M)
PROD_LVL_REQ (M)
RADIUS
RADIUS_UM
RECORD_STATUS (M)
RECUPJNTRVL
RECUP_INTRVL_MAX
RECUP_INTRVL_UM
RELEASE_MARK
RES_PROD (M)
REVIEW_DATE (M)
SHAPE
SYMBOL_CODE
TGT_DTL_NAME (M)
TGT_DTL_SK (M)
UTM
VERTICAL_ORIENT
WAC
WATERBODY
WIDTH
WIDTH_UM
TGT_DTL_SK
There are none for this entity.

113

7.

1.
2.
3.

4.

Related Table(s):
A TGT.DTL many TGT_DTL_AIMPT_WPNs.
A TGT_DTL many TGT_DTL_AKAs.
A TGTJDTL many TGT_DTL_ASSESSs.
A TGT_DTL many TGT_DTL_TIEs.
A TGT_DTL many TGT_DTL_TIEs.

ATGT_DTLmayhavemanyDOC_MGMT_TIEs, EQP_ELINT_MODE_TIEs EQP IDX PAR TIEs
EQP_IDX_TIEs, EQP_TIEs, EVENTTIEs, FAC_TIEs, GEO_TIEs, IND_TIEs, NET LINK DTL TIEs
NET_LINK_TIEs, NET_NODE_TIEs, OBS_TIEs, RMKJIEs, SIG_TIEs, SOURCE TIEs ~ "
TGT_DTL_AIMPT_WPN_TIEs, TGT_DTL_TIEs, TGT_LIST_TIEs, TGT_LIST_TIEJDRDER TIEs
TGT_MSN_TIEs, TGT_OBJ_TIEs, TGT_SYS_TIEs, TRACK_TIEs, UNIT.ALT LOC TIEs UNIT TIE.

Table Name:
Table Long Name:
Description:

and / or strike assessment.
Elements:
ASSESS_DATETIME
ASSESS_TYPE(M)
CLASSJ-VL (M)
CODEWORD
CONDITION (M)
CONDITION_AVAIL
CONTROL_MARK
DATETIME_BEGIN
DATETIME_CREATED (M)
DATETIME_END
DATETIME_FIRST_INFO
DATETIME_LAST_CHG (M)
DATETIME_LAST_INFO
DECLASS_ON
DECLASS_ON_DATE
DOMAINJ-VL (M)
Primary Key(s):
Foreign Key(s):
TGT_DTL_SK References: TGT_DTL
Related Table(s):
A TGT_DTL_ASSESS is associated with exactly one TGT_DTL

TGT_DTL_ASSESS
Target Assessment, Battle Damage or Strike Assessment
This table contains information necessary for battle damage

EVAL(M)
FPA
LAST_CHG_USERID (M)
MIDB_TIMESTAMP (M)
OPER_STATUS (M)
PROD_LVL_CAP (M)
PROD_LVL_REQ (M)
RECORD_STATUS (M)
RECUPJNTRVL
RECUP_INTRVL_MAX
RECUP_INTRVL_UM
RELEASE_MARK
RES_PROD (M)
REVIEW_DATE (M)
TGT_DTL_ASSESS_SK (M)
TGT_DTL_SK (M)
TGT_DTL ASSESS SK

1. Element Name: TGT DTL SK
2. Screen Label: Not displayed.
3. Description:
4. Structure: numeric(14,0), NOT NULL
b. Permissible Values:

SYSTEM GENERATED - SURROGATE KEY. The unique database server
identifier. A numeric value, ranging from 10,000 - 99,999. The database server
id will be unique for each dbserver in the MIDB worldwide network. The DB
Server ID is followed by a one-up-number. A one-up-number series is
maintained for each surrogate key.
Tables: TGT_DTL, TGT_DTL_AIMPT_WPN, TGT DTL AKA,
TGT_DTL_ASSESS ~ ~

1.
2.
3.

4.
5.

Element Name:
Screen Label:

Structure:
Permissible Values:

ASSESS_DATET!ME
ASSESS DATETIME
Description: If the ASSESS_TYPE is Battle Damage Assessment (BDA)
this field will contain the Time On Target value. If the ASSESSJTYPE is Strike
Assessment (SA) this field will contain the Time On Target or the observation
time from the report which last caused a change.
varchar(14), NULL
RUL DATETIME

114

6.

[12][90][0-9][0-9]
[01-12]
[01-31]
[00-23]
[00-59]
[00-59]

Pos. 1-4, Year
Pos. 5-6, Month
Pos. 7-8, Day
Pos. 9-10, Hour
Pos. 11-12, Minute
Pos. 13-14, Second
Positions must be filled from the left. Positions on the right may be null filled.
The minimum entry for this field should be a CENTURY & YEAR. As more
information is available it should be filled. Conforms to the standard of ISO
8601.
Tables: EQP_ASSESS, FAC.ASSESS,TGT_DTL_ASSESS,
TGT_SYS_ASSESS, UNIT.ASSESS, UNIT.STRIKE

2.
3.

4.
5.

6.

Element Name:
Screen Label:

Structure:
Permissible Values:
BDA
SA
O
U
Z

ASSESS_TYPE
ASSESS TYPE
Description: This field indicates whether the row contains BDA or SA
data.
char(4), NOT NULL

CON_ASSESS_TYPE
Battle Damage Assessment
Strike Assessment
Other. Explain In Remarks.
Unknown
Inconclusive Analysis
Tables: EQP_ASSESS, FAC.ASSESS,TGT_DTL_ASSESS,
TGT_SYS_ASSESS, UNIT_ASSESS, UNIT.STRIKE

1. Element Name: CLASS LVL
2. Screen Label: CLASS LVL
3. Description:

record.
4. Structure: char(1), NOT NULL
5. Permissible Values: CON CLASS LVL

U Unclassified
C Confidential
S Secret
T Top secret
Default Value: 'S'

6. Tables: adminsec

Highest classification level of the data contained within the

115

Modernized Integrated Database
Target

Target Assessment/BDAR
Logical Data View

TGT DTL
TGT.DTL SK

AFFILIATION
AIR_OEFAREA
AZIMUTH
AZIMUTHREF
CC(M)
CLASS LVL(M)
CODEWORD
CONDITION (M)
CONDITION AVAIL
CONTROL MARK
COORD (M)
COORD BASIS (M)
COORD DATETIME
COORD_DATUM(M)
COORD DERIV(M)
COORD_DERIV ACC
COORD_DERIV ACC UM
COORDJWA
COORD_ROA_CONF LVL
COORD ROA_UM
DATETIME BEGIN
DATEnME.CREATED (M)
DATETIME END
DATETIMCFIRST INFO
DATETIME LAST CHS (M)
DATETIME LAST INFO
DECLASS ON
DECLASS ON.BATE
DMPI ID
DOM»IN_LVL(M)
ELEVATION
ELEVATION ACC
ELEVATION CONF LVL
ELEVATION DATUM
ELEVATION DERIV
ELEVAT10N~DERIV ACC
ELEVATION DEPJVACC UM
ELEVATION MSL
ELEVAT10N_MSlwACC
ELEVÄnON_MSL_CONF LVL
ELEVATION.MSL_DERIV
ELEVATION_MSL_DERIV ACC
ELEVATION MSL DERIV ACC UM
ELEVATION MSL UM
ELEVATION UM
EVAL(M)
FPA
GEODETIC PROD

GEOIDAL_MSL_SEPARATION
GECIDAL_MSL_SEPARAT10N UM
GRAPHIC AGENCY
GRAPHIC CC
GRAPHCJ=D DATE
GRAPHIC ED NUM
GRAPHIC_SCALE
GRAPHIC.SERIES
GRAPHIC SHEET
HARDNESS
HEIGHT
HEIGHT UM
ILAT
ILON
JMEMTYPE
LAST.CHG USEPJD(M)
LENGTH
LENGTH UM
LOC NAME
MIDBJTIMESTAMP(M)
MIL AREA
MIL GRID
MIL GRID_SYS
MSN TYPE
OPER.STATUS(M)
PHOTO DATE
POL.SUBOIV
PROD_LVL_CAP(M)
PROD_LVLREQ(M)
RADIUS
RADIUS UM
RECORD STATUS (M)
RECUPJNTRVL
RECUPJNTRVL MAX
RECUP INTRVLJJM
RELEASE.MARK
RES PROD(M)
REVIEW.OATE(M)
SHAPE
SYMBOL_CODE
TGT_DTL_NAME(M)
TGT DTL_SK(MJ

UTM
VERTICAL ORIENT
WAC
WATERBODY
WIDTH
WIDTH UM

TGT DTT, AKA
TGT DTL AKA SK
AKA(M) DOMAIN LVL(M)

EVAL(M)
CLASS LVL(M) FPA
CODEWORD LAST_CHG_USERJD(M)

WOB_TIMESTAMP(M)
PROD_LVL_CAP{M)

DATETIME.CREATED (M) PRDCLLVL_REQ(M)

RECORD_STATüS(M)
DATETIME FIRST INFO REUEASE.MARK
DATETIME LAST CHG (M) RES_PROD(M)
DATETIME LAST INFO REV1EW_DATE(M)

TGT_DTL_AKA_SK(M)
DECLASS_ON_DATE TGT_DTL_SK(M) -

Tfyrjm. ASSTTSS
TGT DTL ASSESS SK
ASSESS DATETIME
ASSESS_TYPE(M)
CLASS LVL(M)
CODEWORD
CONDITION (M)
CONDITION AVAIL
CONTROL MARK
DATETIME BEGIN
DATETIME CREATED (M)
DATETIME END
DATETIMEIFIRSTJNFO
DATETIME.LASTCHG(M)
DATETIME LAST INFO
DECLASS ON
DECLASS.ON.DATE
DOMAIN_LVL(M)

EVAL(M)
FPA
LAST_CHG_USERK> (M)
UDB_TIMESTAMP(M)
OPER_STATUS(M)
PROD_LVL_CAP(M)
PROD_LVL_REO(M)
RECORD.STATUS (M)
RECUPJNTRVL
RECUPJNTRVL.MAX
RECUPJNTRVL.UM
RELEASEJUARK
RES.PROO(M)
REVIEW.DATE(M)
TGT_DTL_ASSESS SK(M)
TGT_DTL_SK(M)

TGT DTL TTE
t

TGT_DTL_TIE_SK
'

ASSOC(M) EVAL(M)
ASSOC BEGINJJATE FPA
ASSOC_END DATE LAST_CHO_US£RIO(M)

MIDB_TIMESTAMP(M)
PROD LVL_CAP(M)
PROD_LVL_REO(M)

OATETIME.BEGIN RECORD STATUS (M)
OAT£TIME_CREATEO (M) RELEASE.MARK
DATETIME.END RES_PROD<M)
DATETIME FIRST INFO REMEW.DATE(M)
DATEriME.LAST CHG{M) TGT_DTL_TIE_SK<M)
DATETIME LAST INFO TIE_BOOL(M)

TIE_FROM SK(M)
TIEJTO ENTITY (M)

DOMAIN_LVL(M) TIE_TO_SK(M)

116

APPENDIX C - JCDB XML DOCUMENT

<?xml version="l.0"?>
< TARGET-ENGAGEMENT TARGET_ENGAGE_INDEX="5 8 3 2">
<c_INPUT>184</c_INPUT>
<PLAN_NUMBER>67398</PLAN_NUMBER>
<MSN_NUMBER>16 0 41</MSN_NUMBER>
<COA_NUMBER>8</COA_NUMBER>
<CREATING_UNIT_NUM>21</CREATING_UNIT_NUM>
<PHASE_NUMBER>5</PHASE_NUMBER>
< PLAN_UNIT_NUMBER>2 </PLAN_UNIT_NUMBER>
<TGT_LIST_TYP_CD>19 </TGT_LIST_TYP_CD>
< ENG_PRECEDENCE_CD >1</ENG_PRECEDENCE_CD>
<EFFECTS_CD>3 </EFFECTS_CD>
<TRGT_STRENGTH_NUM>10 </TRGT_STRENGTH_NUM>
<TIME_ACQUIRED_DTTM>010625085623</TIME_ACQUIRED_DTTM>
<TIME_ON_TRGT_DTTM> 010625100000 </TIME_ON_TRGT_DTTM>
<ENGAGEMENT_COMMENT>ENGAGE COORDINATED W/lST

CAV</ENGAGEMENT_COMMENT>
<EFFECTS_PERCENT>75</EFFECTS_PERCENT>
<RECORD_STATUS CODE="AM >
<RECORD_STATUS_DTTM>010625074500</RECORD_STATUS DTTM>
<LABEL>12</LABEL>

</RECORD_STATUS >
<PERCEPTION PERCEP_REF_INDX="8659">
<PERCEP_INPUT_ID>483 94</PERCEP_INPUT_ID>
<RPRTING_ORG RPRTING_ORG_ID="34 732">
<RPRTING_ORG_INPUT>2 94 83 </RPRTING_ORG_INPUT>

</RPRTING_ORG>
< PERCEP_REPRT_DTTM> 010625091500</PERCEP_REPRT_DTTM>
< PERCEP_STRT_DTTM> 010625085500</PERCEP_STRT_DTTM>
< PERCEP_END_DTTM> 010625090000</PERCEP_END_DTTM>
<RECORD_STATUS CODE="A">
<RECORD_STATUS_DTTM>010625091000</RECORD_STATUS DTTM>
<LABEL>10</LABEL>

</RECORD_STATUS >
</PERCEPTION>
<TARGET-ENGAGEMENT-ASSESS ENGMENT_ASSES_INDX="1">
< ENGAGE_END_DTTM >010625100000</ENGAGE_END_DTTM>
<TRGT_DISPO_CD CODE="l">
<LABEL>6</LABEL>

</TRGT_DISPO_CD>
<ENGAGE_DMG_PERCNT> 9 0 </ENGAGE_DMG_PERCNT>
<NUM_OF_CASUALITIES>15</NUM_OF_CASUALITIES>
<RECORD_STATUS CODE="A">
<RECORD_STATUS_DTTM>010625074500</RECORD_STATUS DTTM>
<LABEL>12</LABEL>

</RECORD STATUS>

117

<PERCEPTION PERCEP_REF_INDX="8659">
<PERCEP_INPUT_ID>48394</PERCEP_INPUT ID>
<RPRTING_ORG RPRTING_ORG_ID="34732">~
<RPRTING_ORG_INPUT>29483</RPRTING ORG INPUT>

</RPRTING_ORG> ~~ ~
<PERCEP_REPRT_DTTM>010625101500</PERCEP_REPRT DTTM>
<PERCEP_STRT_DTTM>010625100000</PERCEP_STRT DTTM>
<PERCEP_END_DTTM>010625100500</PERCEP END DTTM>
<RECORD_STATUS CODE="A"> ~~
<RECORD_STATUS_DTTM>010625101500</RECORD STATUS DTTM>
<LABEL>10</LABEL> ~ ~

</RECORD_STATUS >
</PERCEPTION>

</TARGET-ENGAGEMENT-ASSESS>
<TARGET-ENGAGEMENT-ASSESS ENGMENT_ASSES_INDX="2">
<ENGAGE_END_DTTM>010625121500</ENGAGE END DTTM>
<TRGT_DISPO_CD CODE="l"> ~
<LABEL>6</LABEL>

</TRGT_DISPO_CD >
< ENGAGE_DMG_PERCNT > 8 0 </ENGAGE_DMG_PERCNT>
<NUM_OF_CASUALITIES>10</NUM_OF_CASUALITIES>
<RECORD_STATUS CODE="A">
<RECORD_STATUS_DTTM>010625123000</RECORD STATUS DTTM>
<LABEL>12</LABEL> ~~ ~
</RECORD_STATUS >
<PERCEPTION PERCEP_REF_INDX="8659">
<PERCEP_INPUT_ID>483 94</PERCEP_INPUT_ID>
<RPRTING_ORG RPRTING_ORG_ID="34732">
<RPRTING_ORG_INPUT>29483</RPRTING ORG INPUT>

</RPRTING_ORG> ~ ~
<PERCEP_REPRT_DTTM>010625124000</PERCEP_REPRT DTTM>
<PERCEP_STRT_DTTM>010625122 000</PERCEP_STRT DTTM>
<PERCEP_END_DTTM>0106251230 00</PERCEP END DTTM>
<RECORD_STATUS CODE="A"> "~
<RECORD_STATUS_DTTM>010625124 00 0</RECORD STATUS DTTM>
<LABEL>10</LABEL> ~ ~

</RECORD_STATUS >
</PERCEPTION

</TARGET-ENGAGEMENT-ASSESS>
</TARGET-ENGAGEMENT>

118

APPENDIX D - MIDB XML DOCUMENT

<?xml version="l.0"?>
<TARGET TGT_DTL_SK="19954">
<AFFILIATION>H</AFFILIATION>
<COUNTRY>IQ</COUNTRY>
< CLAS S_LVL >U</CLAS S_LVL >
<CONDITION>CCD</CONDITION>
<COORD>234853658S1453 834674W</COORD>
<COORD_BASIS>GA</COORD_BASIS>
<COORD_DATUM>BUP</COORD_DATUM>
<COORD_DERIV>K</COORD_DERIV>
<DATETIME_CREATED>19650229122543</DATETIME_CREATED>
<DATETIME_LAST_CHG>19650229161445</DATETIME_LAST_CHG>
<DOMAIN_LVL>CO</DOMAIN_LVL>
<EVAL>1</EVAL>
<IiAST_CHG_USERID>DJFGEIDG</LAST_CHG_USERID>
<MIDB_TIMESTAMP>2347</MIDB_TIMESTAMP>
<OPER_STATUS>RD0</OPER_STATUS>
< PROD_LVL_CAP > S </PROD_LVL_CAP >
< PROD_LVL_REQ > S </PROD_LVL_REQ >
<RECORD_STATUS >A</RECORD_STATUS >
<RES_PROD >XX</RES_PROD >
<REVIEW_DATE>19650229170210</REVIEW_DATE>
< TGT_DTL_NAME >BADGUYS </TGT_DTL_NAME >
< TGT_DTL_AKA TGT_DTL_AKA_S K="8 7 4 4 2">
<AKA>REALLYBADGUYS < /AKA>
<AKA_TYPE >OAP</AKA_TYPE >
< CLAS S_LVL >U</CLASS_LVL >
<DATETIME_CREATED>19650301063043</DATETIME_CREATED>
<DATETIME_LAST_CHG>19650301065545</DATETIME_LAST_CHG>
<DOMAIN_LVL>CO</DOMAIN_LVL>
<EVAL>1</EVAL>
<LAST_CHG_USERID>HJGFGYVT</LAST_CHG_USERID>
<MIDB_TIMESTAMP>4345</MIDB_TIMESTAMP>
<OPER_STATUS >RD0 </OPER_STATUS >
< PROD_LVL_CAP > S </PROD_LVL_CAP >
< PROD_LVL_REQ > S </PROD_LVL_REQ >
<RECORD_STATUS >A</RECORD_STATUS >
<RES_PROD>XX</RES_PROD>
<REVIEW_DATE >19650310120000</REVIEW_DATE >

</TGT_DTL_AKA>
<TGT_DTL_ASSESS TGT_DTL_ASSESS_SK="24373">
<ASSESS_TYPE>BDA</ASSESS_TYPE>
<CLASS_LVL>U</CIASS_LVL>
< CODEWORD > 0 </CODEWORD>
<CONDITION>DST</CONDITION>
<CONDITION AVAIL>DMG</CONDITION AVAIL>

119

<(L> :CONTROL_MARK>NF</CONTROL_MARK;
<DATETIME_CREATED>19650302183212</DATETIME CREATED>
<DATETIME_LAST_CHG>19650302192354</DATETIME LAST CHG>
<DOMAIN_LVL>CO</DOMAIN_LVL> ~ ~
<EVAL>8</EVAL>
<FPA>EOB</FPA>
<LAST_CHG_USERID>VGFGHJFT</LAST_CHG_USERID>
<MIDB_TIMESTAMP>7654</MIDB_TIMESTAMP>
<OPER_STATUS >RD3 </OPER_STATUS >
< PROD_LVL_CAP > S </PROD_LVL_CAP >
< PROD_LVL_REQ > S < /PROD_LVL_REQ >
<RECORD_STATUS >A</RECORD_STATUS >
<RECUP_INTRVL>10 0 0 </RECUP_INTRVL>
<RECUP_INTRVL_MAX>150 0 </RECUP_INTRVL_MAX>
<RECUP_INTRVL_UM>14DAY</RECUP_INTRVL_UM>
<RELEASE_MARK>BZ</RELEASE_MARK>
<RES_PROD>Z</RES_PROD>
<REVIEW_DATE>1965032 012 0 0 00</REVIEW DATE>

</TGT_DTL_ASSESS> ~
<TGT_DTL_ASSESS TGT_DTL_ASSESS_SK=»37584">
<ASSESS_TYPE>BDA</ASSESS_TYPE>
< CLAS S_LVL >U</CLASS_LVL >
< CODEWORD > 0 </CODEWORD>
<CONDITION>DST</CONDITION>
<CONDITION_AVAIL>DMG</CONDITION_AVAIL>
< CONTROL_MARK>NF </CONTROL_MARK>
<DATETIME_CREATED>19650320120000</DATETIME_CREATED>
<DATETIME_LAST_CHG>1965032 0193110</DATETIME LAST CHG>
<DOMAIN_LVL>CO</DOMAIN_LVL> ~~ ~~
<EVAL>8</EVAL>
<FPA>EOB</FPA>
<LAST_CHG_USERID>JUERHWC</LAST_CHG_USERID>
<MIDB_TIMESTAMP > 8 5 6 6 </MIDB_TIMESTAMP>
<OPER_STATUS >RD3 </OPER_STATUS >
<PROD_LVL_CAP>S</PROD_LVL_CAP>
< PROD_LVL_REQ > S </PROD_LVL_REQ >
<RECORD_STATUS >A</RECORD_STATUS>
<RECUP_INTRVL>2 5 0 0 </RECUP_INTRVL>
<RECUP_INTRVL_MAX> 5000 < /RECUP_INTRVL_MAX>
<RECUP_INTRVL_UM>30DAY</RECUP_INTRVL_UM>
<RELEASE_MARK>BZ</RELEASE_MARK>
<RES_PROD>Z</RES_PROD>
<REVIEW_DATE>1965032212 0000</REVIEW DATE>

</TGT_DTL_ASSESS >
<TGT_DTL_TIE TGT_DTL_TIE_SK="34578">
<ASSOC>AZ</ASSOC>
< CLAS S_LVL >U</CLASS_LVL >
<DATETIME_CREATED>19650229150150</DATETIME CREATED>
<DATETIME_LAST_CHG>19650229161212</DATETIME LAST CHG>
<DOMAIN_LVL>CO</DOMAIN_LVL> ~ ~
<EVAL>1</EVAL>

120

<LAST_CHG_USERID>BNWTF</LAST_CHG_USERID>
<MIDB_TIMESTAMP>9879</MIDB_TIMESTAMP>
<OPER_STATUS >RDO </OPER_STATUS>
< PROD_LVL_CAP > S </PROD_LVL_CAP >
< PROD_LVL_REQ > S </PROD_LVL_REQ >
<RECORD_STATUS >A</RECORD_STATUS >
<RES_PROD>XX</RES_PROD>
<REVIEW_DATE>1965031512 000 0</REVIEW_DATE>
<TIE_BOOL>0</TIE_BOOL>
<TIE_FROM_SK>23429</TIE_FROM_SK>
<TIE_TO_ENTITY>TRG_DTL</TIE_TO_ENTITY>

</TGT_DTL_TIE>
</TARGET>

121

THIS PAGE INTENTIONALLY LEFT BLANK

122

APPENDIX E - ANALYSIS AND MANIPULATION CODE

<html>
<head>
<!-- Code adapted from code provided in XML IE5 (see references). •>
<title>Listing XML Document Nodes and Attributes</title>
<style type="text/css">
BODY {font-family:Tahoma,Verdana,Arial,sans-serif; font-size:12px; font-
weight:normal}
.intro {font-family:Tahoma,Verdana,Arial,sans-serif; font-size:14px;
font-weight:bold}
</style>

<!-- The SRC will have to be changed to name of XML file to be searched.

<XML ID="domSearchList" SRC="jcdbxml.xml"x/XML>

<!-- Code built in JavaScript ->
<SCRIPT LANGUAGE="JavaScript">

//Function parses and checks for errors.
//Note the parseError is a Microsoft extention to the W3C DOM.
//It is the only Microsoft extention used in this code.
//All other APIs used are included in W3C DOM Recommendation #1.
function parseXML() {
//Develops DOM from XML.
objXMLData = document.all['domSearchList'] ;
if (objXMLData.parseError.errorCode != 0) {
alert('Invalid XML file: ' + objXMLData.parseError.reason);
return;

}

//Modify "XXXXX" in searchDocument(objXMLData, "XXXXX")
//to desired search key. Note: Case sensitivity is important!!
divResults.innerHTML = searchDocument(objXMLData, "TARGET-ENGAGEMENT-

ASSESS");
}

//Primary function that executes search of DOM
function searchDocument(sourceDoc, searchKey) {

// declare local variables
var ob j Node;
var strNodes = w;
var 1=0;
var listNodes = '';
var foundNode = w;
var clonedNode;

//Creates XML DOM Fragment.

123

var objFrag;
objFrag = sourceDoc.createDocumentFragment();

// Finds the root of XML document.
theRoot = sourceDoc.documentElement;

// Search for authors.
// Develops a list of Nodes matching search key.
listNodes = theRoot.getElementsByTagName(searchKey);

// Check and show alert on how many found.
// listNodes.length provides number of nodes in list.
if (listNodes.length > 0) {
alert ('Found' + listNodes.length + searchKey);

}
else {

alert ('Found' + listNodes.length + searchKey);
alert ('Check and re-enter Search Key. Note case sensitivity is

important!!');
}
// Loops through list of authors.
for (1=0; I < listNodes.length; I++)
{
//Sets located node.
foundNode = listNodes(I);

//Clones (copies) node ("true" attribute results in all children
being cloned).

objNode = foundNode.cloneNode(true) ;

//Appends cloned node (and children) to XML fragment)
objFrag.appendChild(objNode);

//Loop repeats until nodeList is exhausted.
}

//Provides quick output of built XML fragment,
alert (objFrag.xml);

// Loop through list of authors again to breakdown fragment and then
build output.

for (I = 0; I < listNodes.length; I++)
{
foundNode = listNodes(I);

//strNode is simple text variable that is continuously appended to
build output.

//Calls showChildNodes function that decomposes node.
//Also checks for attributes and checks for child nodes.
//If child nodes exist, the showChildNodes calls the showsChildNodes

function again.
//This recursive function call continues until no are children left.

124

//Then returns strNode.
strNodes += showChildNodes(foundNode, 0) ;
strNodes += ,</BxBR>' + '</BxBR>';

}
return strNodes;

}

//objNode provides the top level foundNode that is to be decomposed.
//intLevel provide the indentation detail as strNode is being built,
function showChildNodes(objNode, intLevel) {
var strNodes = " ;
var intCount = 0;
var intNode = 0;

// Gets the values for this node.
strNodes += getlndent(intLevel) + ,' + objNode.nodeName

+ , Type: ' + getNodeType(objNode.nodeType)
+ , Value: ' + ob j Node, node Value + ,</BxBR>';

// Checks for any attributes.
objAttrList = objNode.attributes;
if (objAttrList != null) {
intCount = objAttrList.length;
if (intCount > 0) {

// For each attribute, displays the attribute information,
for (intAttr = 0; intAttr < intCount; intAttr++) {

strNodes += getlndent(intLevel + 1) + *'
+ objAttrList(intAttr).nodeName + ' Type:

'
+ getNodeType(objAttrList(intAttr).nodeType)
+ * Value: '
+ objAttrList (intAttr) .nodeValue + ></BxBR>';

}
}

// Checks for any child nodes.
intCount = objNode.childNodes.length;
if (intCount > 0) {

// For each child node, display the node, attributes and its child
node information.

for (intNode = 0; intNode < intCount; intNode++) {

//Recursive showChildNodes function call.
strNodes += showChildNodes(objNode.childNodes(intNode), intLevel +

1);
}

}
return strNodes;

}

125

//The getNodeType(intType) function returns detail on type of node.
//The DOM API provides for several different types of nodes,
function getNodeType(intType) {

switch (intType) {
case 1:
return "ELEMENT (1)";
break;

case 2:
return "ATTRIBUTE (2)";
break;

case 3:
return "TEXT (3)";
break;

case 4:
return "CDATA SECTION (4)";
break;

case 5:
return "ENTITY REFERENCE (5)";
break;

case 6:
return "ENTITY (6)";
break;

case 7:
return "PROCESSING INSTRUCTION (7)";
break;

case 8:
return " COMMENT (8) " ,-
break;

case 9:
return "DOCUMENT (9)";
break;

case 10:
return "DOCUMENT TYPE (10)";
break;

case 11:
return "DOCUMENT FRAGMENT (11)";
break;

case 12:
return "NOTATION (12)";

}
}

//getlndent Function call used to improve readability of strNode output.
//Children nodes are indented from parents,
function getlndent(intLevel) {
var strlndent = '';
for (intlndent = 0; intlndent < intLevel; intlndent++)

strlndent += * ,- '
return strlndent;

}

126

//-»
</SCRIPT>

</head>
<!-- HTML is simply used to facilitate calling of functions ->
<!-- and output of strNode ->
<body BGCOLOR="#FFFFFF" ONLOAD="parseXML()">
Located and Decomposed Elements and Children</SPANxP>

<!-- to insert the results of parsing the object model ->
<DIV ID="divResults">Parsing XML file ...</DIV>

<!-- Button function below displays original XML file being examined. ->
<!-- Will have to change name of XML file to one to be examined. ->
<!-- Make sure XML file is contained in same folder as this file. ->
<!-- CAUTION CAUTION CAUTION ->
<!-- If examining extremely large XML files built from large databases

<!-- like JCDB or MIDB. ->
<!-- Best to change Button call to a comment line like the one below ->

<!-- <INPUT TYPE="BUTTON" VALUE=" "
ONCLICK="location.href='onebook.xml'">
 Display the XML ->

<HRxB> &hbsp;
<INPUT TYPE="BUTTON" VALUE=" "
ONCLICK="location.href='JCDBXML.xml'">
 Display the XML
</BxP>

</body>
</html>

127

THIS PAGE INTENTIONALLY LEFT BLANK

128

APPENDIX F - JCDB ANALYSIS OUTPUT

Located and Decomposed Elements and Children

TARGET-ENGAGEMENT-ASSESS Type: ELEMENT (1) Value: null
ENGMENT_ASSES_INDX Type: ATTRIBUTE (2) Value: 1
ENGAGE_END_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625100000
TRGT_DISPO_CD Type: ELEMENT (1) Value: null

CODE Type: ATTRIBUTE (2) Value: 1
LABEL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 6
ENGAGE_DMG_PERCNT Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 90
NUM_OP_CASUALITIES Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 15
RECORD_STATUS Type: ELEMENT (1) Value: null

CODE Type: ATTRIBUTE (2) Value: A
RECORD_STATUS_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625074500
LABEL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 12
PERCEPTION Type: ELEMENT (1) Value: null

PERCEP_REF_INDX Type: ATTRIBUTE (2) Value: 8659
PERCEP_INPUT_ID Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 483 94
RPRTING_ORG Type: ELEMENT (1) Value: null

RPRTING_ORG_ID Type: ATTRIBUTE (2) Value: 34732
RPRTING_ORG_INPUT Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 29483
PERCEP_REPRT_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625101500
PERCEP_STRT_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625100000
PERCEP_END_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625100500
RECORD_STATUS Type: ELEMENT (1) Value: null

CODE Type: ATTRIBUTE (2) Value: A
RECORD_STATUS_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625101500
LABEL Type: ELEMENT (1) Value: null

129

#text Type: TEXT (3) Value: 10

TARGET-ENGAGEMENT-ASSESS Type: ELEMENT (1) Value: null
ENGMENT_ASSES_INDX Type: ATTRIBUTE (2) Value: 2
ENGAGE_END_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625121500
TRGT_DISPO_CD Type: ELEMENT (1) Value: null

CODE Type: ATTRIBUTE (2) Value: 1
LABEL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 6
ENGAGE_DMG_PERCNT Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 80
NUM_OF_CASUALITIES Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 10
RECORD_STATUS Type: ELEMENT (1) Value: null

CODE Type: ATTRIBUTE (2) Value: A
RECORD_STATUS_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625123000
LABEL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 12
PERCEPTION Type: ELEMENT (1) Value: null
PERCEP_REF_INDX Type: ATTRIBUTE (2) Value: 8659
PERCEP_INPUT_ID Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 48394
RPRTING_ORG Type: ELEMENT (1) Value: null

RPRTING_ORG_ID Type: ATTRIBUTE (2) Value: 34732
RPRTING_ORG_INPUT Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 29483
PERCEP_REPRT_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625124000
PERCEP_STRT_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625122000
PERCEP_END_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625123000
RECORD_STATUS Type: ELEMENT (1) Value: null

CODE Type: ATTRIBUTE (2) Value: A
RECORD_STATUS_DTTM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 010625124000
LABEL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 10

130

APPENDIX G - MIDB ANALYSIS OUTPUT

Located and Decomposed Elements and Children
TGT_DTL_ASSESS Type: ELEMENT (1) Value: null

TGT_DTL_ASSESS_SK Type: ATTRIBUTE (2) Value: 24373
ASSESS_TYPE Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: BDA
CLASS_LVL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: U
CODEWORD Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 0
CONDITION Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: DST
CONDITION_AVAIL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: DMG
CONTROL_MARK Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: NF
DATETIME_CREATED Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 19650302183212
DATETIME_LAST_CHG Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 19650302192354
DOMAIN_LVL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: CO
EVAL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 8
FPA Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: EOB
LAST_CHG_USERID Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: VGFGHJFT
MIDB_TIMESTAMP Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 7654
OPER_STATUS Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: RD3
PROD_LVL_CAP Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: S
PROD_LVL_REQ Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: S
RECORD_STATUS Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: A
RECUP_INTRVL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 1000
RECUP_INTRVL_MAX Type: ELEMENT (1) Value: null

131

#text Type: TEXT (3) Value: 1500
RECUP_INTRVL_UM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 14DAY
RELEASE_MARK Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: BZ
RES_PROD Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: Z
REVIEW_DATE Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 19650320120000

TGT_DTL_ASSESS Type: ELEMENT (1) Value: null
TGT_DTL_ASSESS_SK Type: ATTRIBUTE (2) Value: 37584
ASSESS_TYPE Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: BDA
CLASS_LVL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: U
CODEWORD Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 0
CONDITION Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: DST
CONDITION_AVAIL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: DMG
CONTROL_MARK Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: NF
DATETIME_CREATED Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 19650320120000
DATETIME_LAST_CHG Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 19650320193110
DOMAIN_LVL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: CO
EVAL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 8
FPA Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: EOB
LAST_CHG_USERID Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: JUERHWC
MIDB_TIMESTAMP Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 8566
OPER_STATUS Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: RD3
PROD_LVL_CAP Type: ELEMENT (1) Value: null

132

#text Type: TEXT (3) Value: S
PROD__LVL_REQ Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: S
RECORD_STATUS Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: A
RECUP_INTRVL Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 2500
RECUP_INTRVL_MAX Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 5000
RECUP_INTRVL_UM Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 30DAY
RELEASE_MARK Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: BZ
RES_PROD Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: Z
REVIEW_DATE Type: ELEMENT (1) Value: null

#text Type: TEXT (3) Value: 19650322120000

133

THIS PAGE INTENTIONALLY LEFT BLANK

134

GLOSSARY

ABCS Army Battlefield Command System
AFATDS The Advanced Field Artillery Tactical Data System
API Application Programming Interface
BDAR Battle Damage Assessment Report
C2 Command and Control
C4I Command, Control, Communication, Computers, and

Intelligence
COI Community of Interest
COP Common Operational Picture
COTS Commercial-Off-The-Shelf
CTP Common Tactical Picture
DBMS Database Management System
DIICOE Defense Information Infrastructure Common Operating

Environment
DISA Defense Information Systems Agency
DoD Department of Defense
DOM Document Object Model
DTD Document Type Definition
GCCS Global Command and Control System
GML Generalized Markup Language
HTML Hypertext Markup Language
I3 Integrated, Imagery and Intelligence
IDEF1X Integration Definition for Information Modeling
ISO International Organization for Standardization
JBC Joint Battle Center
JBMI Joint Battle Management Initiative
JCDB Joint Common Database
MIDB Modernized Intelligence Database
MSXML Microsoft XML Parser
NPS Naval Postgraduate School
ODBC Open Database Connectivity
OODB Object-Oriented Database
OODBMS Object Oriented Database Management System
OS-OTG Over the Horizon Targeting Gold
R&R Registry and Repository
RDBMS Relational Database Management System
SAX Simple API for XML
SAX Simple API for XML
SGML Standardized Generalized Markup Language
SHADE SHAred Data Engineering
SME Subject Matter Expert
SMEs Subject Matter Experts
SQL Structured Query Language
SQL Structured Query Language
TARDEC Tank-Automotive Research, Development and

Engineering Center
TDBM Track Database Manager
URI Unified Resource Identifier

135

USMTF United States Message Text Format
VMF Variable Message Format
W3C World Wide Web Consortium
XML Extensible Markup Language
XSL Extensible Stylesheet Language
XSLT Extensible Stylesheet Language Transformation

136

LIST OF REFERENCES

[AMP99] Automated Message Preparation Course, FORSCOM, 1
November 1999

[ANDOO] P. Anderson (and many others), Professional XML,
WROX Press, 2000

[BOUR00] R. Bourret, XML Namespaces FAQ, 2 000
[DISA00] S. Klynsma, Guidance on the Use of Extensible

Markup Language within DoD, DISA, 29 August 2000
[DISABRF] J Pipher, DIICOE Data Engineering XML Registry

Brief, DISA, 26 February 1999
[DISAWS] DISA DIICOE Web site,

http://diides.ncr.disa.mil/shade/index.cfm
[DOD98] DoD 8320.1-M-l, Data Standardization Procedures,

April 1998
[EHLY01] T. Ehrhardt and B. Lyttle, InterConnectivity Via

a Consolidated Type Hierarchy and XML, NPS,
December 2000

[HIN00] D. Hina, Evaluation of the XML as a Means for
Establishing Interoperability Between
Heterogeneous DoD Databases, NPS, September 2000

[HOP99] B. Hopkins, XML - A Tool for Interoperability,
Logicon supporting Navy Center for Tactical
Systems Interoperability, 8 June 1999

[HZ01] H. Zobair, An Approach for Matching Corresponding
Attributes in Legacy Heterogeneous DoD Databases,
NPS/TACOM, June 2001

[I3BR] GCCS 13 Brochure,
http://c4iweb.spawar.navy.mil/pm/gccsi3

[IDEF93] Integration Definition for Information Modeling
(IDEF1X), Department of Commerce, National
Institute of Standards and Technology, Computer
Systems Laboratory, 21 December 1993

[INFWS] Informix Web Site
[JBMI00] JBC, Joint Battle Management Initiative

Assessment Plan Draft, 11 August 2000
[JCDB99] R. Carnevale, The Joint Common Database, PEO C3S,

18 May 1999
[JDD00] Data Dictionary for the Joint Common Database,

PEO C3S Horizontal Technology Integration Office,
1 June 2000

[MAP00] M. Cokus, XML-MTF Mapping Third Public Working
Draft, MITRE Corp. supporting U.S. Air Force, 4
August 2 000

[MID98] Modernized Integrated Database Database Design
Document V2.01, 29 June 1998

[ODBCWP] Microsoft's ODBC Web Page,
www.microsoft.com/data/odbc

[ORCWS] Oracle Web Site
[PRXML00] Professional XML, Wrox Press, 2000

137

[RCWP] R. Cover/ The XML Cover Pages - W3C DOM, 16
November 2000, www.oasis-open.org/cover/dom.html

[SEM99] w. Li, C. Clifton, SEMINT: A tool for identifying
attribute correspondences in heterogeneous
databases using neural networks, Data & Knowledge
Engineering, 23 February 1999

[SYBWS] Sybase Web Site
[W3CWP] World Wide Web Consortium Web Page:

http:www.w3c.org
[XMDBOO] K. Williams, Professional XML Databases, Wrox

Press, 2000
[XMLIE99] A. Homer, XML IE5, Wrox Press, 1999
[XMLMPOO] J. Schneider, XML-MTF Update Brief, MITRE Corp.

supporting U.S. Air Force, 29 May 2000
[XMLR1.0] XML Recommendation 1.0, W3C, 10 February 1998
[XMLVOO] E. Masek, XML-VML Kickoff Brief, Mitre Inc., 2000

138

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2 . Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, California 93943-5101

3 . Chairman, Code CS 1
Naval Postgraduate School
Monterey, California 93943-5100

4 . Dr. Luqi, CS/Lq 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

5 . Dr. Valdis Berzins 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

6 . CAPT Paul Young 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

7. Mike Saboe, Associate Director 1
U.S. Army Next Generation Software Engineering
ATTN: AMSTA-TR-R/265
Warren, MI 48397-5000

8 . Robert F. Halle 6
30455 Inkster
Franklin, Michigan 48025

139

